## Topics:

- Ungrounded system
- Derivation of current expression in ungrounded system
- Advantages & disadvantages of ungrounded system
- Concept of effective and non-effective grounding
- Coefficient of earthing and earth fault factor

### Underground Neutral Or Undergrounded System

Before 1950 power system were often without neutral grounding. Such system had * repeated arcing grounds*,

*and*

**insulation failure***.*

**difficult earth fault protection**Every phase has inherent distributed capacitance with respect to earth. If earth fault occurs on phase B, the distributed capacitance discharges through the fault. The capacitance again gets charged and gets discharged. Because of this sever * voltage oscillation* is reached in healthy phases.

These voltage oscillation causes stress on insulation of connected equipment.

**Ic2** = jCwv2

**Ic3** = jCwv3

**Ic** = jCwv2 + jCwv3

**Ic** = jCw(v2 + v3) // Equation-01

**Now by drawing the phaser diagram as shown below wecan write:**

VN + V2 = **v2** // Equation-02

VN + V3 = **v3** // Equation-03

**Substituting equation -02 and equation-03 in equation-01:**

**Ic** = jCw(VN + V2 + VN + V3)

**Ic** = jCw(2VN + V2 + V3) // Equation-04

* Voltage phasers V3* can be resolved in the direction of

*and in direction perpendicular to V*

**V**_{N}_{N}as

*.*

**V3Cosθ and V3Sinθ**Similarly * voltage phaser V2* can be resolved as

**V2Cosθand – V2Sinθ***Hence:*

**V2 + V3** = V3Cosθ + V3Sinθ + V2Cosθ – V2Sinθ // Equation-05

**V3** = V2

V3Cosθ + V2Cosθ = **V _{N}**

**Substituting in equation-05 we get:**

V2 + V3 = VN = V1 (Since V1 is shorted to ground soVN = V1) // Equation-06

**Substituting equation-06 in equation- 04 we get:**

Ic = jCw(2VN + VN)

**Total capacitive charging and discharging current of healthy phase is:**Ic = j3CwV1

**For ungrounded system:**

If = IC2 + IC3 = IC = j3CwV1 // Equation-07

*, in unearthed system ground fault current is totally dependent on*

**equation -07***returning via the network phase-earth capacitances. This is the reason for*

**capacitive current***in healthy phases of ungrounded system.*

**sever voltage stress**Since * there is no return path available for fault current* in ungrounded system so detection of earth fault current is difficult. This is other disadvantage of ungrounded system.

### Advantages of Ungrounded System

**There are some advantages of ungrounded system:**

- Ungrounded system has negligible earth fault current
- Some continuous process or system and essential auxiliaries where single phase to ground fault should not trip the system.

### Disadvantages of Ungrounded System

**However below listed disadvantages of ungrounded system are more adverse than advantages:**

- Unearthed system experience repeated arcing grounds.
- Insulation failure occurs during single phase to ground faults.
- Earth fault protection for unearthed system is difficult.
- Voltage due to lightning surges do not find path to earth.

In order to overcome the above mentioned technical and operation issues the concept of system grounding was introduced. System grounding is connecting the neutral of system to earth.

*.*

**neutral of system**### System grounding is of two types:

Effective grounding is also called solid grounding that is without resistance or reactance. In this case co-efficient of earthing ismore than 80%**Effective grounding:**When neutral to earth connection is made through resistance or reactance than the system is said to be non-effectively grounded. In this case coefficient of earthing is greater than 80%**Non effective grounding:**

### Coefficient of earthing and earth fault factor

**Ce = Highest phase to ground voltage of healthy phase / Phase to phase voltage**

In a system without neutral earth (* refer Figure 1*), phase to earth voltage phase-1 and phase-2 rises to 3times phase to phase voltage Vrms during single phase to earth fault on phase 3. In a neutral earthed system the voltage ofhealthy phase rises to Ce times Vrms.

**Therefore value of Ce:**

- For non-effectively earthed system
**Ce = 1** - For effectively earthed system
. Hence surge arrester rated voltage is > 0.8 V rms**Ce < 0.8**

Surge voltage kV instantaneous is taken as 2.5 times of * critical flashover voltage (CFOV)* of line insulation. Thus discharge current is given as:

**I = (2.5(CFOV) –Residual voltage of arrester) / Surge impedance of line**

*is a ratio calculated at selected point of the power system for a given system.*

**Earth fault factor**

**Earth fault factor = V1/V2**= Highest RMS phase to phase voltage of healthy phases (**V1***phase 2 and 3 refer to Figure 1*) during earth faulton pahse-1= RMS value of phase to earth voltage at same location with fault on faulty phases removed**V2**

###### References:

- Industrial electrical network design guide By Schneider electric
- Switchgear protection & power system By Sunil S Rao, Khanna publications
- EARTHING: Your questions answered By Geoff Cronshaw
- IEEE Recommended Practice for Electric Power Distribution for Industrial Plants

Istvan Butkai

Dear Asif!

I met ungrounded systems when i was commissioning engineer. There was 11/0,4 kV transformer with ungrounded 0,4 kV side. The cable to the ciruit breaker not too long, so capacitive earthing current not too high. What is the guaranty , the secunder voltage is below 1 kV to the earth? It could be possible 4-5 kV to the earth. Such kind of systems are working. Something is there what i don’t know.

amgad

Thanks for the explanation. I would like to know if there is effective protection method for unearthed system with high capacitance or a filter for EMI at the system??

sareer ahmad

Thanks, please give more explanation on effective and non effective grounding system. co-efficient of earthing is more than 80% in effective grounding and greater than 80% in non effective grounding system.

Edvard

Great overview Asif! Looking forward to second ‘Grounded’ part!

Saravanan

Thank you, as you said i am budding engineer, please provide any books or materials on grounding

Edvard

Use search box on top bar.

josehenriquezsoto

Congratulations, as always the content, photos and presentation of this website are outstanding. In this case when I saw the picture I asked “What would be the result of a electrical resistance testing by the four-point method to that connection?” Who knows … Greetings.