## Calculate voltage drop

Let’s calculate voltage drop in transformer **1000KVA**, **11/0.480 kV**, impedance** 5.75%** due to starting of **300 kW**, **460V**, **0.8 power factor**, **motor code D (kva/hp)**. Motor starts **2 times per hour** and the allowable voltage drop at transformer secondary terminal is **10%**.

Calculation can be checked by using this MS Excel Spreadsheet dedicated especially to this kind of problem.

**Ok, let’s get into the calculations…**

### Motor current / Torque

**Motor full load current = (Kw x 1000) / (1.732 x Volt (L-L) x P.F**

- Motor full load current = 300 × 1000 / 1.732 x 460 x 0.8 = 471 Amp.
**Motor locked rotor current = Multiplier x Motor full load current**

### Locked rotor current (Kva/Hp)

Motor Code | Min | Max |

A | 3.15 | |

B | 3.16 | 3.55 |

C | 3.56 | 4 |

D | 4.1 | 4.5 |

E | 4.6 | 5 |

F | 5.1 | 5.6 |

G | 5.7 | 6.3 |

H | 6.4 | 7.1 |

J | 7.2 | 8 |

K | 8.1 | 9 |

L | 9.1 | 10 |

M | 10.1 | 11.2 |

N | 11.3 | 12.5 |

P | 12.6 | 14 |

R | 14.1 | 16 |

S | 16.1 | 18 |

T | 18.1 | 20 |

U | 20.1 | 22.4 |

V | 22.5 |

- Min. motor locked rotor current (L1) = 4.10 × 471 = 1930 Amp
- Max. motor locked rotor current (L2) = 4.50 × 471 = 2118 Amp
**Motor inrush Kva at Starting (Irsm) = Volt x locked rotor current x Full load current x 1.732 / 1000**- Motor inrush Kva at Starting (Irsm) = 460 x 2118 x 471 x 1.732 / 1000 = 1688 kVA

## Transformer

**Transformer full load current = kVA / (1.732 x Volt)**- Transformer full load current = 1000 / (1.73 2× 480) = 1203 Amp.
**Short circuit current at TC secondary (Isc) = Transformer full load current / Impedance**- Short circuit current at TC secondary = 1203 / 5.75 = 20919 Amp
**Maximum kVA of TC at rated Short circuit current (Q1) = (Volt x Isc x 1.732) / 1000**- Maximum kVA of TC at rated Short circuit current (Q1) = 480 x 20919 x 1.732 / 1000 = 17391 kVA
**Voltage drop at transformer secondary due to Motor Inrush (Vd) = (Irsm) / Q1**- Voltage drop at transformer secondary due to Motor inrush (Vd) = 1688 / 17391 = 10%
- Voltage drop at Transformer secondary is 10% which is within permissible limit.
**Motor full load current ≤ 65% of Transformer full load current**- 471 Amp ≤ 65% x 1203 Amp = 471 Amp ≤ 781 Amp

**is within limit**and Motor full load current ≤ TC full load current.

Size of Transformer is Adequate.

Lilantha Neelawala

Awaiting reply for all above comments.

Giorgi

Hello

When you calculated the full load current of the motor, why did you not take into the account the efficiency of the motor, as i know the full formula is as follows: (KW*1000)/(1.732*v*pf*eff)

(eff-efficiency).

owen ezeagwula

(1) Motor inrush Kva at Starting (Irsm) = Volt x locked rotor current x Full load current x 1.732 / 1000.

(2) Motor inrush Kva at Starting (Irsm) = Volt x locked rotor current x 1.732/1000

(2) above is the correct relationship.

shantilal parmar

Dear Jignesh sir,

Please can you tell me.

how to find out powe HT TX correct number of turns for primary& secondary winding, size of the winging conductor, core size as we know primary voltage/secondary voltage & secondary load.

rama rao

sir,

Good morning,

we have the loads like 48X2kw(single phase energy meters) + 20X5Kw(3phase energy meters) + 13kw (separate building purpose) = 209KW . what is the capacity of Transformer. Please give the detailed formula to know the actual rating

umair aziz

It correct. But if load increase in future

Load plus 30% to 50% future load add. Then after calculate.

Vishwajeet

A single phase transformer rating

33 kva 2400/240 V, 60Hz….here I want to know that the secondary voltage V2=240V is at No Load or Full load…if it is at No load or at full then please explain how..

SACHIN DAVE

I want to know design of transformer,

having data only 1000 VA i/p : 415 V , o/p : 230 V , single phase

Hoe to decide primary and secondary turns and also cross section area

please give all details with formulas if possible

Oladipo

Thanks for the calculation its so helpful, however I have a small doubt.

As regards the motor starting 2 times per hour, no 20% was added to the motor’s minimum kVA rating to compensate for heat losses within the transformer as said in many references.

Please clarify , if starting the motor 2 times per hour has little or no impact as nothing was mention in your calculation.

Thanks for the good job once more

Regards

Manish

I have one compressor with 20HP motor and our transformer is 200KVA, due to strarting current of motor a voltage drop is there which affects other machines. How can i minimise the same.

siddharth awasthi

sir i m interested in opening a saw.mill . for.that i m installing a 15 hourse.power electricity moter. department.sying thae.above said.moter will take.a.load.off 100 killowatt.

i m very surprise. to tha load calculated by them

will u please help me.to calculate.the load.

1.) 15 hourse.power.moter

2.) 3 normal. 100 watt bulb

Rustico Taguiam

Which better % impedance of distribution transformer, a higher % or lower %?

5.75% or 4.5%?

ABANG NIZAMUDDIN

Based on my understanding, selection of Z% of the transformer depends on the distribution system. If you have another transformer to be paralleled, where the KVA are similar, we will definitely select the same Z% for both transformers. This will ensure equal load sharing and avoid circulating current in the transformers windings.

If your installation solely relying on only 1 transformer, now, you can select any size of your Z%. This Z% will be useful especially to limit the fault current. The higher the Z% the lower the fault current can be reduced. However, in the future, if there is a new installation, you would consider the branches being connected to your distribution system. Introducing a load / source in parallel to your system will increase the fault current in your system.

So depending on your application, you decide which Z% to be applied by considering the philosophy of your system operation, your transformer configuration/connection (parallel?) and considering the fault level in your system. This will also lead to your sizing of cables and busbars as well.

I hope this help. Appreciate for your feedback / comment.

Minu

There is a error in the attached excel calculator. It calculated kVA by multiplying kW and power factor. Actual equation is kVA=kW/power factor.

bhavin mistry

Dear sir, i want know about maximum secondry connectable load as per transfor mer rating

Djarot Prasetyo

Hi! I’d like to know, what standard did you use for the locked rotor current?

Thanks!

Benn Richey

There’s an error in the calculations above: “Motor inrush Kva at Starting (Irsm) = 460 x 2118 x 471 x 1.732 / 1000 = 1688 kVA”

It should be: Motor inrush Kva at Starting (Irsm) = 460 x 4.5 x 471 x 1.732 / 1000 = 1688 kVA

Mujeeb Raza

Hi All,

I want to get this into detail, if the output of this transformer is connected to load of small industries (assume same data), What factors are to look into while selecting cable for the secondary of transformer up to the LV panel.

Zulfiqar Ali

Dear sir i hope u r doing fine..your website is very helpfull for engineering articles.many thanks for creating a such type of website.

but in above article there is a slight mistake in calculations.i hope u ll remove and correct it immediately to avoid more confusions between engineers

Motor inrush Kva at Starting (Irsm) = 460 x 2118 x 471 x 1.732 / 1000 = 1688 kVA

in above equation 471 is repeating .which should not b repeated

this equation should be

Motor inrush Kva at Starting (Irsm) = 460 x 2118 x 1.732 / 1000 = 1688 kVA

hope u got my point.

Thanks And Regards,

Engr Zulfikar Ali

Mayank P Shah

We are going to set up a new project.Biggest motors are of 260 KW x 2 and 245 KW x 4.

Total running load is expected of 3100 KVA.Please let us know the size of Dist.Transformer of 11 / 0.433 KV when we starts these heavy motors.All motors are proposed by VFD.We are working around 3500 KVA Transformer.Please guide us.

haytham151

It’s v.g refreshable exp , but l have to wander if i missed something here or you make amistake by the formula :

Motor inrush Kva at Starting (Irsm) = Volt x locked rotor current x Full load current x 1.732 / 1000

I think you point to :

Motor inrush Kva at Starting (Irsm) = Volt x locked rotor current x Full load current x 1.732 / 1000

haytham151

Motor inrush Kva at Starting (Irsm) = Volt x locked rotor current x 1.732 / 1000

vinod

Please furnish relevant standard for the portion” Motor full load current ≤ 65% of Transformer full load current”.

Efficiency not considered while calculating full load current of motor.

Mohammed zougti

Mistake

•Motor inrush Kva at Starting (Irsm) = 460 x 2118 x 471 x 1.732 / 1000 = 1688 kVA

Should be •Motor inrush Kva at Starting (Irsm) = 460 x 2118 x 1.732 / 1000 = 1688 kVA

P.Paulpandy.

I have found formula of motor inrush kva at starting time wrong because when i use your formula the motor kva must be 795353 kva ( motor capacity is 300 kw). but, i see your electrical article 1688 kva.

Please check and clarify.

Maher M. Al Qadhi

Dear Sir

I hope you are doing well.

And thank you for this useful example

I have one question which is if I want to calculate the transformer size & volt drop due to building of 11.89 Km square.

Can I use the important above tips to calculate it ?

thank you again.

Amr Ahmed

This calculation for DOL motor starting only or for any starting method , also kindly give me information about the following standard in the point ”Motor full load current ≤ 65% of Transformer full load current ”.

Thanks & Regards

subrata deb

Following points to be considered even assuming that prior to starting of this motor

there is no other load which is fed by the transformer:

1) 300KW is the output rating of motor.Therefore efficiency of motor should be considered

to find F.L current 2) +10% tolerance on percentage impedance of transformer should be considered

As per IS 6600, all the parts of transformer are designed to carry maximum overload

of +50%. Therfore it should be checked that motor starting kva must be within 1.5 times of

transformer capacity.

The logic that motor F.L current shall be less or equal to 65% of transformer rated current is not clear. Please furnish the relevant standard.

Lalit Kumar

The above calculations does not consider additional loads which might be fed from the same transformer feeding the large motor.