Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Maintenance Of Low Voltage Circuit Breakers
Maintenance Of Low Voltage Circuit Breakers
Maintenance Of Low Voltage Circuit Breakers

The deterioration of low voltage circuit breaker is normal and  this process begins as soon as the circuit breaker is installed. If  deterioration is not checked, it can cause failures and malfunctions. The purpose of an electrical preventive maintenance and testing program should be to recognize these factors and provide means for correcting them.

A good organized maintenance program can minimize accidents, reduce unplanned shutdowns and lenghten the mean time between failures of electrical equipment.

Benefits of good electrical equipment maintenance can be reduced cost of process shutdown (caused by circuit breaker failure), reduced cost of repairs, reduced downtime of equipment, improved safety of personnel and property.

Frequency Of Maintenance

Low-voltage circuit breakers operating at 600 volts alternating current and below should be inspected and maintained very 1 to 3 years, depending on their service and operating conditions.

Conditions that make frequency maintenance and inspection necessary are:

  1. High humidity and high ambient temperature.
  2. Dusty or dirty atmosphere.
  3. Corrosive atmosphere.
  4. Frequent switching operations.
  5. Frequent fault operations.
  6. Older equipment.

A breaker should be inspected and maintained if necessary whenever it has interrupted current at or near its rated capacity.

Maintenance Procedures

Manufacturer’s instructions for each cir­cuit breaker should be carefully read and followed. The following are general pro­cedures that should be followed in the maintenance of low-voltage air circuit breakers:

  1. An initial check of the breaker should be made in the TEST position prior to withdrawing it from to enclo­sure.
  2. Insulating parts, including bushings, should be wiped clean of dust and smoke.
  3. The alignment and condition of the movable and stationary contacts should be checked and adjusted ac­cording to the manufacturer’s instruction book.
  4. Check arc chutes and replaces any damaged parts.
  5. Inspect breaker operating mechanism for loose hardware and missing or broken cotter pins, etc. Examine cam, latch, and roller surfaces for damage or wear.
  6. Clean and relubricate operating mechanism with a light machine oil (SAE-20 or 30) for pins and bearings and with a nonhardening grease for the wearing surfaces of cams, rollers, etc.
  7. Set breaker operating mechanism adjustments as described in the manufacturer’s instruction book. If these adjustments cannot be made within the specified tolerances, it may indicate excessive wear and the need for a complete overhaul.
  8. Replace contacts if badly worn or burned and check control device for freedom of operation.
  9. Inspect wiring connections for tightness.
  10. Check after servicing circuit breaker to verify the contacts move to the fully opened and fully closed positions, that there is an absence of friction or binding, and that electrical operation is functional.

Much of the essence of effective electrical equipment preventive maintenance can be sumarrized by four rules:

  • Keep it DRY
  • Keep it CLEAN
  • Keep it COOL
  • Keep it TIGHT
SOURCE: Maintenance of power circuit breakers by Hydroelectric Research And Technical Services Group

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

4 Comments


  1. Topp Hero
    Sep 27, 2015

    Thank you very much, This site is my adviser.
    :)

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

thirty eight  −    =  twenty eight

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge