Search
Home / Technical Articles / Electric Motor / Operating Principle Of Three Phase Asynchronous Motors
Fig.1 - An induced current is generated in a short-circuited shading ring
Fig.1 - An induced current is generated in a short-circuited shading ring

The operating principle of an asynchronous motor involves creating an induced current in a conductor when the latter cuts off the lines of force in a magnetic field, hence the name “induction motor”. The combined action of the induced current and the magnetic field exerts a driving force on the motor rotor.

Let’s take a shading ring ABCD in a magnetic field B, rotating round an axis xy (C Fig. 1). If, for instance, we turn the magnetic field clockwise, the shading ring undergoes a variable flux and an induced electromotive force is produced which generates an induced current (Faraday’s law).

According to Lenz’s law, the direction of the current is such that its electromagnetic action counters the cause that generated it.

Each conductor is therefore subject to a Lorentz force F in the opposite direction to its own movement in relation to the induction field.

Fig.2 - Rule of three fingers of the right hand to find the direction of the force
Fig.2 - Rule of three fingers of the right hand to find the direction of the force

An easy way to define the direction of force F for each conductor is to use the rule of three fingers of the right hand (action of the field on a current, – Fig. 2).

The thumb is set in the direction of the inductor field. The index gives the direction of the force. The middle finger is set in the direction of the induced current.

The shading ring is therefore subject to a torque which causes it to rotate in the same direction as the inductor field, called a rotating field. The shading ring rotates and the resulting electromotive torque balances the load torque.

SOURCE: Schneider Electric Automation Solution Guide

SEARCH: Articles, software & guides

Premium Membership

Premium membership gives you an access to specialized technical articles and extra premium content (electrical guides and software).
Get Premium Now ⚡

About Author

author-pic

Edvard Csanyi

Edvard - Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry fascilities. Professional in AutoCAD programming. Present on

Leave a Comment

Tell us what you're thinking... we care about your opinion!