Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Torque Of Three-Phase Induction Motor Explained

Introduction to motor torque

The rotating force that a motor develops is called torque. Due to the physical laws of inertia, where a body at rest tends to remain at rest, the amount of torque necessary to start a load (starting torque) is always much greater than the amount of torque required to maintain rotation of the load after it has achieved normal speed.

https://electrical-engineering-portal.com/torque-of-three-phase-induction-motor-explained
https://electrical-engineering-portal.com/torque-of-three-phase-induction-motor-explained

The more quickly a load must accelerate from rest to normal rotational speed, the greater must be the torque capability of the motor driver.

For very large inertia loads or loads that must be accelerated quickly, a motor having a high starting torque should be applied.

The National Electrical Manufacturers Association (NEMA) provides design letters to indicate the torque, slip, and starting characteristics of three-phase induction motors.

They are as follows:


Design A

Design A is a general-purpose design used for industrial motors. This design exhibits normal torques and full-load slip of approximately 3 percent and can be used for many types of industrial loads.


Design B

Design B is another general-purpose design used for industrial motors. This design exhibits normal torques while also having low starting current and a full-load slip of approximately 3 percent. This design also can be used for many types of industrial loads.


Design C

Design C motors are characterized by high starting torque, low starting current, and low slip. Because of its high starting torque, this design is useful for loads that are hard to start, such as reciprocating air compressors without unloader kits.


Design D

Design D motors exhibit very high starting torque, very high slip of 5 to 13 percent, and low starting current. These motors are excellent in applications such as oil field pumping jacks and punch presses with large flywheels.


Variable-torque and Constant-torque motors

Variable-torque motors exhibit a speed-torque character-istic that varies as the square of the speed.

For example, a two-speed 1800/900-rpm motor that develops 10 hp at 1800 rpm produces only 2.5 hp at 900 rpm. Variable-torque motors are often a good match for loads that have a torque requirement that varies as the square of the speed, such as blowers, fans, and centrifugal pumps.

Constant-torque motors can develop the same torque at each speed; thus power output from these motors varies directly with speed. For example, a two-speed motor rated at 10 hp at 1800 rpm would produce 5 hp at 900 rpm.

These motors are useful in applications with constant-torque requirements, such as mixers, conveyors, and positive-displacement compressors.

Induction Motor How it works? (VIDEO)

Resource // Electrical Calculation Handbook – John M. Paschal

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

3 Comments


  1. Alejandro
    Oct 28, 2020

    Greetings, good article.

    Variable torque motors would be used to work with a vfd in an extruder ¿?


  2. Babat
    May 20, 2015

    good information please keep sharing with us.

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

five  ×    =  10

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge