Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Types of neutral earthing in power distribution (part 1)

Introduction

In the early power systems were mainly Neutral ungrounded due to the fact that the first ground fault did not require the tripping of the system. An unscheduled shutdown on the first ground fault was particularly undesirable for continuous process industries.

Low voltage switchgear - Power distribution
Low voltage switchgear – Power distribution (by MEC Electrical Engineering)

These power systems required ground detection systems, but locating the fault often proved difficult. Although achieving the initial goal, the ungrounded system provided no control of transient over-voltages.

A capacitive coupling exists between the system conductors and ground in a typical distribution system. As a result, this series resonant L-C circuit can create over-voltages well in excess of line-to-line voltage when subjected to repetitive re-strikes of one phase to ground.

This in turn, reduces insulation life resulting in possible equipment failure.

Neutral grounding systems are similar to fuses in that they do nothing until something in the system goes wrong. Then, like fuses, they protect personnel and equipment from damage. Damage comes from two factors, how long the fault lasts and how large the fault current is. Ground relays trip breakers and limit how long a fault lasts and Neutral grounding resistors limit how large the fault current is.

Importance of Neutral Grounding

There are many neutral grounding options available for both Low and Medium voltage power systems. The neutral points of transformers, generators and rotating machinery to the earth ground network provides a reference point of zero volts.

This protective measure offers many advantages over an ungrounded system, like:

  1. Reduced magnitude of transient over voltages
  2. Simplified ground fault location
  3. Improved system and equipment fault protection
  4. Reduced maintenance time and expense
  5. Greater safety for personnel
  6. Improved lightning protection
  7. Reduction in frequency of faults.

Methods of Neutral Earthing

There are five methods for Neutral earthing:

  1. Unearthed Neutral System
  2. Solid Neutral Earthed System
  3. Resistance Neutral Earthing System
    • Low Resistance Earthing
    • High Resistance Earthing
  4. Resonant Neutral Earthing System
  5. Earthing Transformer Earthing

1. Ungrounded Neutral Systems

In ungrounded system there is no internal connection between the conductors and earth. However, as system, a capacitive coupling exists between the system conductors and the adjacent grounded surfaces. Consequently, the “ungrounded system” is, in reality, a “capacitive grounded system” by virtue of the distributed capacitance.

Under normal operating conditions, this distributed capacitance causes no problems. In fact, it is beneficial because it establishes, in effect, a neutral point for the system; As a result, the phase conductors are stressed at only line-to-neutral voltage above ground.

But problems can rise in ground fault conditions. A ground fault on one line results in full line-to-line voltage appearing throughout the system. Thus, a voltage 1.73 times the normal voltage is present on all insulation in the system.

This situation can often cause failures in older motors and transformers, due to insulation breakdown.

Ungrounded neutral system
Ungrounded neutral system

Advantages

After the first ground fault, assuming it remains as a single fault, the circuit may continue in operation, permitting continued production until a convenient shut down for maintenance can be scheduled.

Disadvantages

  1. The interaction between the faulted system and its distributed capacitance may cause transient over-voltages (several times normal) to appear from line to ground during normal switching of a circuit having a line-to ground fault (short). These over voltages may cause insulation failures at points other than the original fault.
  2. A second fault on another phase may occur before the first fault can be cleared. This can result in very high line-to-line fault currents, equipment damage and disruption of both circuits.
  3. The cost of equipment damage.
  4. Complicate for locating fault(s), involving a tedious process of trial and error: first isolating the correct feeder, then the branch, and finally, the equipment at fault. The result is unnecessarily lengthy and expensive down downtime.

2. Solidly Neutral Grounded Systems

Solidly grounded systems are usually used in low voltage applications at 600 volts or less. In solidly grounded system, the neutral point is connected to earth.

Solidly Neutral Grounding slightly reduces the problem of transient over voltages found on the ungrounded system and provided path for the ground fault current is in the range of 25 to 100% of the system three phase fault current..

However, if the reactance of the generator or transformer is too great, the problem of transient over voltages will not be solved.

While solidly grounded systems are an improvement over ungrounded systems, and speed up the location of faults, they lack the current limiting ability of resistance grounding and the extra protection this provides.

To maintain systems health and safe, Transformer neutral is grounded and grounding conductor must be extend from the source to the furthest point of the system within the same raceway or conduit. Its purpose is to maintain very low impedance to ground faults so that a relatively high fault current will flow thus insuring that circuit breakers or fuses will clear the fault quickly and therefore minimize damage.

Solidly Neutral Grounded Systems
Solidly Neutral Grounded Systems

It also greatly reduces the shock hazard to personnel!

If the system is not solidly grounded, the neutral point of the system would “float” with respect to ground as a function of load subjecting the line-to-neutral loads to voltage unbalances and instability. The single-phase earth fault current in a solidly earthed system may exceed the three phase fault current. The magnitude of the current depends on the fault location and the fault resistance.

One way to reduce the earth fault current is to leave some of the transformer neutrals unearthed.

Advantages

The main advantage of solidly earthed systems is low over voltages, which makes the earthing design common at high voltage levels (HV).

Disadvantages

  1. This system involves all the drawbacks and hazards of high earth fault current: maximum damage and disturbances.
  2. There is no service continuity on the faulty feeder.
  3. The danger for personnel is high during the fault since the touch voltages created are high.

Applications

  1. Distributed neutral conductor
  2. 3-phase + neutral distribution
  3. Use of the neutral conductor as a protective conductor with systematic earthing at each transmission pole
  4. Used when the short-circuit power of the source is low
To be continued in Types of neutral earthing in power distribution (part 2)
References:
  • By Michael D. Seal, P.E., GE Senior Specification Engineer.
  • IEEE Standard 141-1993, “Recommended Practice for Electrical Power Distribution for Industrial Plants”
  • Don Selkirk, P.Eng, Saskatoon, Saskatchewan Canada

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Jignesh Parmar

Jignesh Parmar has completed M.Tech (Power System Control), B.E (Electrical). He is member of Institution of Engineers (MIE), India. He has more than 20 years experience in transmission & distribution-energy theft detection and maintenance electrical projects.

20 Comments


  1. Ahmed Saad
    Oct 14, 2019

    Thanks to provide us how we can achieve the Earth fault protection in the LV system with Earthed Natural

    (TNC ground system) ?


  2. siamand Arjmand
    May 24, 2019

    thank you,it is very useful.please put all kind of earthing method


  3. sandeep
    Oct 09, 2018

    Sir,

    from my point of view ,we earth the neutral of transformer to main the ground potential.If we notprovide earthing to neutal of transformer there is a fluctuation in phase.


  4. Shyam singh Ranawat
    Sep 30, 2018

    How many neutral earth pits are there for one transformer in a sub-station?
    A). One
    B). Two
    C).Three
    D).four


    • shashi kant
      Nov 23, 2018

      One is sufficient but if you have resistance of earth pit is high you can provide one more earthing for connecting in parallel to decrease the resistance.


  5. umar
    Apr 10, 2018

    Dears

    Anybody can provide size of neutral earthing conductor size of a transformer – the size of the transformer is 2500KVA


  6. Abraham Tetteh
    May 28, 2017

    how can you make an earthing system in your house to solid and how many feet can the earth rode must be dig in the


  7. Ntneric
    Jul 20, 2016

    I am working in SE Asia to provide 1500kVA 11kV/380V step down delta star transformers as part of the electrical distribution.
    Earthed neutral in the secondary side of Tx to from a TT earthing system is required as per local code requirement.
    There is a debate about whether it is necessary to provide PVC sheath conductor or just bare conductor for the earthed neutral (i.e. from the star point to the earth electrode).
    I have seen bare and insulated earthing conductor in similar cases before.
    My view is that the star point should be zero current and voltage under normal condition. The use of Bare conductor (for example tinned cu. tape) can be justified.
    Any advice?


    • Girish R Nair
      Jul 25, 2016

      Hi,
      Its no matter whether bare or insulated but the cross sectional area of conductor matters. But in most cases we use bare copper near to the Transformer , Generator etc. may be to avoid chance of heating of insulation.


    • Anil Paul Jacob
      Apr 25, 2018

      Tinned copper strip or cable are ok. It is not necessary to use sleeves


    • shashi kant
      Nov 23, 2018

      No need of insulation. you can provide direct earthing with earth strip.


  8. PRASAD
    Dec 06, 2015

    Sir,
    Can the Neutrals of 16MVA,132KV/33KV Power Transformer be connected to Earth-Pit by
    using ETP grade Copper Flat for affective continuity ?

    Prasad


    • Girish R Nair
      Jul 25, 2016

      Cross sectional area of the earthing conductor should be sufficient to carry the fault current.


  9. Dave Ladd
    Aug 26, 2015

    I am interested in finding out what the European equivalent of an HRG Low voltage distribution system is. What does IEC 60364 say about it and is there any use of it in Europe.


  10. ravi
    Feb 16, 2015

    i am a system administrator , after losing 3 hardisks in my computer i came to notice this was happened due to improper earthing . so i a make small earthing connection from power socket to my kitchen sink . ever thing working fine my system didn’t getting any shock . my doubt is , am i risk by earthing into kitchen sink


    • Girish R Nair
      Jul 25, 2016

      Yes , it’s sort of risk. Please provide a sufficient pipe earth or plate earth by using an electrician in your locality. The present system is highly dangerous to human life, though your computer working properly


  11. PL.Sundaram
    Jul 12, 2014

    i have some doubt with grounding system where plant i work thri is facing a issue on the RCCB trip at one monh once . the main breaker is 100amp and tripping current is 300ma. all 13 amp outlet reptacles is connected to work table which is equip with 100 ma elcb . the work bench is using soldering iron ,hot air blower and some hand tools. . is about 7 work bench similar to that. is connected. i can find any fault after test with elcb checker . as remedial action i have taken is to install ELR with time delay is a about 0.05 ms. Is solve for 2 month and now starts agian. dont know what to do as next step to indentify the fault current. it become very chalenging. needed your expert advice to overcome the issuance


    • Girish R Nair
      Jul 25, 2016

      Most probably any of your equipment passes a very small leakage current to earth, which is within the limit normally. But at rare times, some other factors may affect the faulty current path to further deteriorate its insulation and thus the current rises ( factors may be moisture in atmosphere or any of your eqpt, overheating of any side of your work table or insulation, wetness of floor, connecting or disconnecting of some particular eqpt etc. )


  12. ganna ravi
    Dec 05, 2013

    if I give Distribution transformer Neutral to Grid Earth what is the problem occurring in this system ( Designer is given like this)


  13. harshanaigc
    Feb 03, 2013

    In Solidly Grounded System, How does the neutral point voltage increase?
    it should also in ground voltage(earthed. Please explain.

    Thanks,
    Chalaka

Leave a Reply to ravi

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

  ⁄  ten  =  one

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge