Search

Premium Membership ♕

Experience matters. Learn from experienced electrical engineers. Study specialized LV/HV technical articles, papers and courses.

Home / Technical Articles / Analog Data Acquisition with Transducers
Current transducer
Current transducer

Transducers measure power system parameters by sampling instrument transformer secondaries. They provide a scaled, low-energy signal that represents a power system quantity that the SA interface controller can easily accept. Transducers also isolate and buffer the SA interface controller from the power system and substation environments. Transducer outputs are dc voltages or currents in the range of a few tens of volts or milliamperes.

Transducers measuring power system electrical quantities are designed to be compatible with instrument transformer outputs.

Potential inputs are based around 120 or 115 Vac, and current inputs accept 0 to 5 A. Many transducers can operate at levels above their normal ranges with little degradation in accuracy provided their output limits are not exceeded. Transducer input circuits share the same instrument transformers as the station metering and protection systems; thus, they must conform to the same wiring standards as any switchboard component. Wiring standards for current and potential circuits vary between utilities, but generally 600-V-class wiring is required, and no. 12 AWG or larger wire is used.

Special termination standards also apply in many utilities. Test switches for “in-service” testing of transducers are often provided to make it possible to test transducers without shutting down the monitored equipment. Transducers may also require an external power source to operate. When this is the case, the reliability of this source is crucial in maintaining data flow.

Transducer outputs are voltage or current sources specified to supply a rated voltage or current into a specific load. For example, full output may correspond to 10 V at up to 1.0 mA or 1.0 mA into 10 kΩ, up to 10 V maximum. Some over-range capability is provided in transducers so long as the maximum current or voltage capability is not exceeded. The over-range can vary from 20 to 100%, depending on the transducer.

However, accuracy is usually not specified for the over-range area. Transducer outputs are usually wired with shielded, twisted-pair cable to minimize stray signal pickup.

In practice, no. 18 AWG conductors or smaller are satisfactory, but individual utility practices differ. It is common to allow transducer output circuits to remain isolated from ground to reduce the susceptibility to transient damage, although some SA controller suppliers provide a common ground for all analogs, often to accommodate electronic multiplexers. Some transducers may also have a ground reference associated with their outputs. Double grounds, where transducer and controller both have ground references, can cause major reliability problems.

Practices also differ somewhat on shield grounding, with some shields grounded at both ends, but it is also common practice to ground shields at the SA controller end only. When these signals must cross a switchyard, however, it is a good practice to not only provide the shielded twisted pairs, but it also to provide a heavy-gauge overall cable shield.

This shield should be grounded where it leaves a station control house to enter a switchyard and where it reenters another control house. These grounds are terminated to the station ground mass, and not to the SA analog grounds bus.

Resource: The Interface between Automation and the Substation by James W. Evans, The St. Claire Group

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
Edvard Csanyi - Author at EEP-Electrical Engineering Portal

Edvard Csanyi

Hi, I'm an electrical engineer, programmer and founder of EEP - Electrical Engineering Portal. I worked twelve years at Schneider Electric in the position of technical support for low- and medium-voltage projects and the design of busbar trunking systems.

I'm highly specialized in the design of LV/MV switchgear and low-voltage, high-power busbar trunking (<6300A) in substations, commercial buildings and industry facilities. I'm also a professional in AutoCAD programming.

Profile: Edvard Csanyi

2 Comments


  1. Sam Bocetta
    Oct 31, 2016

    Some great info here Edvard, analog DAQ has come a long way in the last 2-3 years.

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

three  ×  three  =  

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.