Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Download Center / Electrical Engineering Books and Technical Guides / Electrical engineering guides / Basic Circuit Theorems For Electrical Engineers Beginners

Superposition, Thevenin’s Norton’s circuit theorems

Almost all electric circuits are complex, but it is an engineer’s goal to reduce their complexity to analyze them easily. In this guide, we will introduce new techniques to strengthen our armoury to solve complicated networks.

Circuit Theorems For Electrical Engineers Beginners
Circuit Theorems For Electrical Engineers Beginners

Also, these new techniques in many cases do provide insight into the circuit’s operation that cannot be obtained from mesh or nodal analysis.

Most often, we are interested only in the detailed performance of an isolated portion of a complex circuit.

If we can model the remainder of the circuit with a simple equivalent network, then our task of analysis gets greatly reduced and simplified.

For example, the function of many circuits is to deliver maximum power to load such as an audio speaker in a stereo system.

Here, we develop the required relationship betweeen a load resistor and a fixed series resistor which can represent the remaining portion of the circuit. Two of the three theorems that we present in this guide will permit us to do just that.

Superposition theorem

The principle of superposition is applicable only for linear systems.

Thevenin’s theorem

The main objective is to reduce some portion of a circuit to an equivalent source and a single element. This reduced equivalent circuit connected to the remaining part of the circuit will allow us to find the desired current or voltage. Thevenin’s theorem is based on circuit equivalence.

Norton’s theorem

It states that a linear two-terminal network can be replaced by an equivalent circuit consisting of a current source iN in parallel with resistor RN , where iN is the short-circuit current through the terminals and RN is the input or equivalent resistance at the terminals when the independent sources are turned off.

If one does not wish to turn off the independent sources, then RN is the ratio of open circuit voltage to short–circuit current at the terminal pair.

Title:Circuit Theorems – Chapter 3
Format:PDF
Size:3.20 MB
Pages:118
Download:Right here | Video Courses | Membership | Download Updates
Basic Circuit Theorems For Electrical Engineers Beginners
Basic Circuit Theorems For Electrical Engineers Beginners

Premium Membership

Get access to premium HV/MV/LV technical articles, advanced electrical engineering guides, papers, and much more! It will help you to shape up your technical skills in your everyday life as an electrical engineer.
50% Discount 💥 - Save 50% on all 90+ video courses with Enterprise Membership plan.

More Information

3 Comments


  1. FAJERI
    Apr 25, 2016

    Hello, great team, I want to thank all over of your team for the most important time you are spending to answer to our needs…..

    However, I would like to ask some helps to calculate ground current fault (Io) Phase-ground, of a three-phase of bus barre in the MV cubicle switchboard.

    Thanks a lot
    BR


  2. Saadoune
    Apr 24, 2016

    I am looking for the arc flash study and I want to use easypower software but it is very expensive.
    Would you pls advise how can I do that? and which best software can I use?

    Thanks in advence


  3. Francisco Gomes
    Apr 18, 2016

    Tenho a agradecer o bom trabalho feito por esta equipa que todos os fins de semana nos enviam este belíssimo trabalho para todos nós…um grande bem haja a todos vocês….fazem a diferença daqueles que se formam nas mesmas áreas e depois ficam agarrados a um qualquer gabinete apenas a assinar papéis….só por esta diferença vale a pena o meu muito obrigado!…

Leave a Reply to Francisco Gomes

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

91  −  eighty two  =  

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge