Premium Membership ♕

Save 50% on all EEP Academy courses with Enterprise Membership Plan and study specialized LV/MV/HV technical articles & guides.

Home / Download Center / Electrical Engineering Books and Technical Guides / Electrical engineering guides / Instrument Current and Voltage Transformers (Part 3)

Digital Current Transformers

Current transformers (CTs) are used in all electrical power systems for metering and protection applications. These devices reproduce analog secondary current (Is) proportional to the current in the primary system. Various types of current transformers are used which are classified based on the accuracy requirement as metering class and protective class (otherwise known as measuring and relaying CTs).

Instrument Current and Voltage Transformers - Part 3
Instrument Current and Voltage Transformers – Part 3 (photo credit:
These CTs are known to introduce two types of errors namely ratio (current) error and phase displacement. These errors are in almost all cases are not introduced intentionally.

In a CT designed based on induction, some part of primary AT (ampere-turn) is used as exciting AT to initiate polarization (reorientation of) of magnetic domains in an iron core CT (or transforming the electromagnetic field energy from primary to the secondary circuit).

Some amount of the energy is lost as eddy current heat loss (eddy currents that flow in the metallic body in response to varying ac flux cutting it in a plane perpendicular to it or a component in that plane), some energy is consumed as hysteresis loss (in rotating polarity of the magnetic domains every ½ cycle resulting in some sort of loss analogous to friction) and some AT is consumed in magnetizing the core.

Thus a CT draws some AT from total primary AT (primary AT equals to Ix Np

where Np is number of turns of primary which the core encloses) called an exciting AT (which is represented as Ie x Np; where Ie is exciting current).

This exciting AT is therefore made of two perpendicular components one Iw x NP (watt loss AT made of eddy current and hysteresis losses) and Im x NP (magnetizing AT). Therefore, of the total MMF (magneto-motive force) of Ip x NP net available for transformation is (Ip x NP Ie x NP). This will be used to transform to secondary AT (IsxNs).

AS we recall, for an Ideal CT: we have equation Ip x Np = Is x Ns.

For a practical CT we have equation (Ip x Np – Ie x NP)=Is x Ns. The ratio error is due to the magnitude of Ie and the phase displacement occurs due to the error triangle formed between Ie, Iw & Im.

Title:Instrument-Transformers – Part 2 of 3 Current Voltage Transformers
Size:21.2 MB
Download:Right here | Video Courses | Membership | Download Updates
Instrument Current and Voltage Transformers - 3
Instrument Current and Voltage Transformers – 3

Premium Membership

Get access to premium HV/MV/LV technical articles, advanced electrical engineering guides, papers, and much more! It will help you to shape up your technical skills in your everyday life as an electrical engineer.
50% Discount 💥 - Save 50% on all 90+ video courses with Enterprise Membership plan.

More Information

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

  −  one  =  1

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge