Search

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical guides, studies and much more! Apply 20% OFF Code: EEP09PE
Home / Download Center / Electrical Engineering Books and Technical Guides / Power substation guides / Intelligent distribution automation of MV/LV transformer stations at LV networks

Advanced power quality management

Unlike passive filters, active filters do not produce connection overvoltages, because the charge will not be trapped in capacitors similarly. The typical structure of active filters contains an inductor, i.e. filter coil and power electronic converter, i.e. switches and capacitor energy storage.

Intelligent distribution automation of MV/LV transformer stations at LV networks
Intelligent distribution automation of MV/LV transformer stations at LV networks

The active filter converter is typically controlled in such a way that opposite phase harmonic waveforms are produced and harmonic propagation is re-duced or eliminated. In addition to harmonic filtering, the power factor can be corrected by using active filters. In future active filter functions, harmonic filtering and power fac-tor correction could be implemented in the grid side control of the energy storage.

Therefore, the management of an active filter by using SCADA and NIS/DMS could be used as a guideline on the management of energy storage applications.

Managements systems and the communication architecture of a MV/LV transformer stations with energy storage are shown on the Figure 1.

The communication architecture of this vision is based on the public intemet and it consists of Ethernet and IP protocols, transformer centre gateways (GW) and the local IP network in the MV/LV transformer station and the control centre. The IP network enables multiple protocols to be used, which can be used e.g. by energy trade, storage management configuration, re-mote control, power quality and web-based services.

A vision of MV/LV transformer stations with energy storage, management systems and IP -communication architecture.
Figure 1 – A vision of MV/LV transformer stations with energy storage, management systems and IP -communication architecture.

An encrypted virtual private network (VPN) could be used, when the traffic is tunnelled through the public network.

Standard IEC protocols are used to control distributed resources and filters. The intelligent logical device of the energy storage could be modelled using the object-oriented structure and architecture defined in IEC 61850 and in its later IEC additions.

Advanced management applications of energy storages, including battery management, could be web-based and accessible also from the NIS/DMS system. The communication of the energy storage consists also of that of the configuration of the storage and that of energy trade applications. The power quality measurement of the energy storage could be used in a power quality database, in the NIS/DMS system and in SCADA.

The SCADA schematic diagram in Figure 2 shows an MV/LV transformer station with an active filter. It consists of the symbols of the disconnectors of the ring unit, the dis-connectors of the transformer, the transformer, the relay of the LV busbar, the fuse-switches of the LV feeders, and the relay of the feeder of the active filter.

In addition, the active filter (red) and possible measurements and indications are presented.

The SCADA schematic diagram of a MV/LV transformer station with an active filter
Figure 2 – The SCADA schematic diagram of a MV/LV transformer station with an active filter. Examples of possible variables, alarms and warnings of an active filter on the right.

Extensive monitoring of LV processes and of PQ indices with SCADA contain a high number of points for both measured and calculated values.

The pricing of SCADA products depends on the number of the points needed. This has provided until now a reason-able way for small and large distribution companies to afford SCADA updates. In order to allow large-scale, multi-value LV monitoring, new SCADA and NIS/DMS pricing ways would be needed.

A new pricing that is not based on the number of points could eliminate the unnecessary virtual grouping, structures and condensing of LV information. A relational database, for instance, is capable of handbag very large databases and the processing and memory capacity of the information system has increased exponentially.

Also, high-speed networks have become available and are developing fast. The actual bottleneck could therefore be the pricing of the SCADA product.

Title: Intelligent distribution automation of MV/LV transformer stations at LV networks – Johan Nyberg at University of Vaasa, Department of electrical engineering and energy technology
Format: PDF
Size: 2.0 MB
Pages: 187
Download: Right here | Get Download Updates | Get Premium Membership
Intelligent distribution automation of MV/LV transformer stations at LV networks
Intelligent distribution automation of MV/LV transformer stations at LV networks

Premium Membership

Premium membership gives you an access to specialized technical articles and extra premium content (electrical guides and software).
More Information

Leave a Comment

Tell us what you're thinking... we care about your opinion!

Subscribe to Weekly Digest

Get email alert whenever we publish new electrical guides and articles.