Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Electrical Power System Overcurrents

Serving to loads

Electrical power systems must be designed to serve  a variety of loads safely and reliably. Effective  control of short-circuit current, or fault current as  it is commonly called, is a major consideration  when designing coordinated power system protection. 

In order to fully understand the nature of fault  current as it is applied to electrical power system  design, it is necessary to make distinctions among  the various types of current available, normal as  well as abnormal.

It is also important to  differentiate between the paths which the various  types of current will take.

Both current type and  current path, as well as current magnitude, will  affect the selection and application of overcurrent  protective devices.


Normal current

Normal, or load, current may be defined as the  current specifically designed to be drawn by a load  under normal, operating conditions. Depending  upon the nature of the load, the value of normal  current may vary from a low level to a full-load  level. Motors offer a good example. Normal motor  current varies from low values (under light loading)  to medium values (under medium loading) to  maximum values (under maximum loading). Maximum  load current is called full load current and is  included on the motor nameplate as FLA (Full-Load Amperes).

Normal current, therefore, may vary from low values to FLA values. Additionally,  normal current flows only in the normal circuit path. The normal circuit path includes the phase and neutral conductors. It does not include equipment grounding conductors.

Overload current

Overload current is greater in magnitude than full-load current and flows only in the normal circuit path. It is commonly caused by overloaded equipment, single-phasing, or low line voltage, and thus is considered to be an abnormal current. Some overload currents, such as motor starting currents, are only temporary, however, and are treated as normal currents. Motor starting current is a function of the motor design and may be as much as twenty times full-load current in extreme cases.

Motor starting current is called locked-rotor current and is included on the motor nameplate as LRA (Locked-Rotor Amperes). Overload current, then, is greater in magnitude than full-load amperes but less than locked-rotor amperes and flows only in the normal circuit path.


Short-circuit current

Short-circuit current is greater than locked-rotor current and may range upwards of thousands of amperes. The maximum value is limited by the maximum short-circuit current available on the system at the fault point. Short-circuit current may be further classified as bolted or arcing.

  • Bolted short-circuit current
    Bolted short-circuit current results from phase conductors becoming solidly connected together. This may occur from improper connections or metal objects becoming lodged between phases. Obviously, large amounts of short-circuit current will flow into a bolted fault.
    .
  • Arcing short-circuit current
    Arcing short-circuit current results from phase conductors making less than solid contact. This condition may result from loose connections or insulation failure. When this happens, an arc is necessary to sustain current flow through the loose connection. Since the arc presents an impedance to the flow of current, smaller amounts of current will flow into an arcing fault than will flow into a bolted fault.
    .
  • Failure classifications
    Short-circuit currents, whether bolted or arcing, will involve two or more phase conductors. Line-to-line faults involve two-phase conductors (A-B, B-C, C-A) while three-phase faults involve all three phases (A-B-C).  Although three-phase bolted short-circuits rarely occur in practice, short-circuit studies have traditionally been based upon the calculation of three-phase, bolted short-circuit current. Modern personal computers and associated software have made the calculation of all types of fault currents easier to accomplish.

Ground-fault current

Ground-fault current consists of any current which flows outside the normal circuit path. A ground-fault condition then, results in current flow in the equipment grounding conductor for low-voltage systems. In medium- and high-voltage systems, ground-fault current may return to the source through the earth. Ground-fault protection of medium-voltage and high-voltage systems has been applied successfully for years using ground current relays. Ground-fault protection of low-voltage systems is a considerable problem because of the presence and nature of low-level arcing ground faults.

Ground-fault current on low-voltage systems may be classified as leakage, bolted, or arcing.

  • Leakage ground-fault current.
    Leakage ground-fault current is the low magnitude current (milliampere range) associated with portable tools and appliances. It is caused by insulation failure, and is a serious shock hazard. Personnel protection is accomplished by using ground-fault circuit interrupters (GFCI) in the form of GFCI receptacles or GFCI-circuit-breakers.
    .
  • Bolted ground-fault current
    Bolted groundfault current results when phase conductors become solidly connected to ground (i.e., the equipment grounding conductor or to a grounded metallic object). Bolted ground-fault current may equal or even exceed three-phase, bolted short-circuit current if the system is solidly grounded. Equipment protection is accomplished by using standard phase and ground overcurrent devices depending upon system voltage levels.
    .
  • Arcing ground-fault current
    Arcing groundfault current results from a less than solid connection between phase conductors and ground. Because an arc is necessary to sustain current flow through the connection, the magnitude of arcing ground-fault current will be less than that of bolted ground-fault current. Depending upon the arc impedance, arcing ground-fault current may be as low as several amperes (low-level) or as high as 20-38 percent of three-phase, bolted short-circuit current (high level) on a 480V system.
    Considerable research has been conducted in the area of arcing ground-fault current magnitudes on low voltage systems. Some designers use the 38 percent value while others use the 20 percent figure.

NEMA PB2.2 applies ground-fault damage curves instead of performing a calculation. Equipment protection is accomplished by using ground-fault protective (GFP) devices. Due to ionization of the air, arcing ground faults may escalate into phaseto-
phase or three-phase faults.

SOURCE: COORDINATED POWER SYSTEMS PROTECTION – Technical manual – US Army

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

21 Comments


  1. GAm
    Nov 04, 2011

    why you are twitting old post in twitter? too much spam from your site.. but still don’t wan ‘t to miss new posts.


    • Edvard
      Nov 04, 2011

      Well, there are many readers world wide in different time zones, so in fact that’s why we’re tweeting articles many times.

      However, thank you very much for he remark!


  2. kalai
    Dec 17, 2010

    This article is simple and easy to understand if it is with the relevant calculation methods it will be more and more usefull.Thanks.

Leave a Reply to kalai

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

sixty three  ⁄    =  7

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge