Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / GIS control system
FIGURE 1 - Local control cabinet for GIS
FIGURE 1 - Local control cabinet for GIS

For ease of operation and convenience in wiring the GIS back to the substation control room, a local control cabinet (LCC) is provided for each circuit breaker position (Figure 1). The control and power wires for all the operating mechanisms, auxiliary switches, alarms, heaters, CTs, and VTs are brought from the GIS equipment modules to the LCC using shielded multiconductor control cables.

In addition to providing terminals for all the GIS wiring, the LCC has a mimic diagram of the part of the GIS being controlled. Associated with the mimic diagram are control switches and position indicators for the circuit breaker and switches. Annunciation of alarms is also usually provided in the LCC. Electrical interlocking and some other control functions can be conveniently implemented in the LCC.

Although the LCC is an extra expense, with no equivalent in the typical AIS, it is so well established and popular that attempts to eliminate it to reduce cost have not succeeded. The LCC does have the advantage of providing a very clear division of responsibility between the GIS manufacturer and user in terms of scope of equipment supply.

Switching and circuit breaker operation in a GIS produces internal surge voltages with a very fast rise time on the order of nanoseconds and a peak voltage level of about 2 per unit. These “very fast transient overvoltages” are not a problem inside the GIS because the duration of this type of surge voltage is very short — much shorter than the lightning impulse voltage.

However, a portion of the VFTO will emerge from the inside of the GIS at any place where there is a discontinuity of the metal enclosure – for example, at insulating enclosure joints for external CTs or at the SF6-to-air bushings.

The resulting “transient ground rise voltage” on the outside of the enclosure may cause some small sparks across the insulating enclosure joint or to adjacent grounded parts.

These may alarm nearby personnel but are not harmful to a person because the energy content is very low. However, if these VFT voltages enter the control wires, they could cause faulty operation of control devices. Solid-state controls can be particularly affected. The solution is thorough shielding and grounding of the control wires.

For this reason, in a GIS, the control cable shield should be grounded at both the equipment and the LCC ends using either coaxial ground bushings or short connections to the cabinet walls at the location where the control cable first enters the cabinet.

SOURCE: Electric Power Engineering BY Philip Bolin Mitsubishi Electric Power

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

4 Comments


  1. Anwar Ali
    Jul 29, 2018

    Dear Mr.Edvard Csanyi,
    I want to do research a PhD student on reducing cabling between EHV/HV GIS & LCC by using I/O digital or analogue modules with control cable or FO cables media.
    I need your kind support and advise on this.

    Thanking you in advance.


  2. Jay Narkhede
    Aug 04, 2016

    I have question regarding LCC panel testing..
    Can LCC panels be tested using PLC? How?


  3. ananth
    Feb 21, 2013

    this website is a boon to the electrical engineers…………………


    • Edvard
      Feb 21, 2013

      Thanks Ananth! Glad you find it usefull.

Leave a Reply to Anwar Ali

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

fifty nine  +    =  67

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge