Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Harmonics. What are they? What do they do?

What are harmonics?

The harmonics allow to represent any periodic waveform. In fact, according to Fourier’s theorem, any periodic function of a period T may be represented as a summation of:

Harmonics. What are they? What do they do?
Harmonics. What are they? What do they do? (photo credit: ElPaso TubeAmps via Youtube)
  • A sinusoid with the same period T;
  • Some sinusoids with the same frequency as whole multiples of the fundamental;
  • A possible continuous component, if the function has an average value not null in the period.

The harmonic with frequency corresponding to the period of the original waveform is called fundamental and the harmonic with frequency equal to “n” times that of the fundamental is called harmonic component of order “n”.

A perfectly sinusoidal waveform complying with Fourier’s theorem does not present harmonic components of order different from the fundamental one.

Therefore, it is understandable how there are no harmonics in an electrical system when the waveforms of current and voltage are sinusoidal. On the contrary, the presence of harmonics in an electrical system is an index of the distortion of the voltage or current waveform and this implies such a distribution of the electric power that malfunctioning of equipment and protective devices can be caused.

To summarize: the harmonics are nothing less than the components of a distorted waveform and their use allows us to analyse any periodic nonsinusoidal waveform through different sinusoidal waveform components.

Figure 1 below shows a graphical representation of this concept.

Graphical representation of harmonics
Figure 1 – Graphical representation of harmonics


How harmonics are generated?

Harmonics are generated by nonlinear loads. When we apply a sinusoidal voltage to a load of this type, we shall obtain a current with non-sinusoidal waveform. The diagram of Figure 2 illustrates an example of nonsinusoidal current waveform due to a nonlinear load:

Left: Linear load waveform; Right: Non-linear load waveform
Figure 2 – Left: Linear load waveform; Right: Non-linear load waveform

This nonsinusoidal waveform can be deconstructed into harmonics. If the network impedances are very low, the voltage distortion resulting from a harmonic current is low too and rarely it is above the pollution level already present in the network. As a consequence, the voltage can remain practically sinusoidal also in the presence of current harmonics.

To function properly, many electronic devices need a definite current waveform and thus they have to ’cut’ the sinusoidal waveform so as to change its rms value or to get a direct current from an alternate value. In these cases the current on the line has a nonsinusoidal curve.

The main equipment generating harmonics are:

  • Personal computer
  • Fluorescent lamps
  • Static converters
  • Continuity groups
  • Variable speed drives
  • Welders

In general, waveform distortion is due to the presence of bridge rectifiers (inside of these equipment), whose semiconductor devices carry the current only for a fraction of the whole period, thus originating discontinuous curves with the consequent introduction of numerous harmonics.

Also transformers can be cause of harmonic pollution. In fact, by applying a perfectly sinusoidal voltage to a transformer, it results into a sinusoidal magnetizing flux, but, due to the phenomenon of the magnetic saturation of iron, the magnetizing current shall not be sinusoidal.

Figure 3 shows a graphic representation of this phenomenon:

Phenomenon of the magnetic saturation of transformer iron
Figure 3 – Phenomenon of the magnetic saturation of transformer iron

The resultant waveform of the magnetizing current contains numerous harmonics, the greatest of which is the third one. However, it should be noted that the magnetizing current is generally a little percentage of the rated current of the transformer and the distortion effect becomes more and more negligible the most loaded the transformer results to be.


5 really nice effects of harmonics

The main problems caused by harmonic currents are //

1. Overloading of neutrals
2. Increase of losses in the transformers
3. Increase of skin effect

The main effects of the harmonics voltages are //

4. Voltage distortion
5. Disturbances in the torque of induction motors


1. Overloading of neutrals

In a three phase symmetric and balanced system with neutral, the waveforms between the phases are shifted by a 120° phase angle so that, when the phases are equally loaded, the current in the neutral is zero.

The presence of unbalanced loads (phase-to-phase, phase-to-neutral etc.) allows the flowing of an unbalanced current in the neutral.

Unbalanced system of currents
Figure 4 – Unbalanced system of currents

Figure 4 shows an unbalanced system of currents (phase 3 with a load 30% higher than the other two phases), and the current resultant in the neutral is highlighted in red. Under these circumstances, the Standards allow the neutral conductor to be dimensioned with a cross section smaller than the phase conductors.

In the presence of distortion loads it is necessary to evaluate correctly the effects of harmonics.

In fact, although the currents at fundamental frequency in the three phases cancel each other out, the components of the third harmonic, having a period equal to a third of the fundamental, that is equal to the phase shift between the phases (see Figure 5 below), are reciprocally in phase and consequently they sum in the neutral conductor adding themselves to the normal unbalance currents.

The same is true also for the harmonics multiple of three (even and odd, although actually the odd ones are more common).

Figure 5 - Fundamental harmonic and 3rd harmonic
Figure 5 – Fundamental harmonic and 3rd harmonic

Go back to Effects of harmonics ↑


2. Increase of losses in the transformers

The effects of harmonics inside the transformers involve mainly three aspects //

  1. Increase of iron losses (or no-load losses)
  2. Increase of copper losses
  3. Presence of harmonics circulating in the windings

The iron losses are due to the hysteresis phenomenon and to the losses caused by eddy currents. The losses due to hysteresis are proportional to the frequency, whereas the losses due to eddy currents depend on the square of the frequency.

The copper losses correspond to the power dissipated by Joule effect in the transformer windings. As the frequency rises (starting from 350 Hz) the current tends to thicken on the surface of the conductors (skin effect). Under these circumstances, the conductors offer a smaller cross section to the current flow, since the losses by Joule effect increase.

These two first aspects affect the overheating which sometimes causes a derating of the transformer.

The third aspect is relevant to the effects of the triple-N harmonics (homopolar harmonics) on the transformer windings. In case of delta windings, the harmonics flow through the windings and do not propagate upstream towards the network since they are all in phase.

The delta windings therefore represent a barrier for triple-N harmonics, but it is necessary to pay particular attention to this type of harmonic components for a correct dimensioning of the transformer.

3. Increase of skin effect

When the frequency rises, the current tends to flow on the outer surface of a conductor. This phenomenon is known as skin effect and is more pronounced at high frequencies.

At 50 Hz power supply frequency, skin effect is negligible, but above 350 Hz, which corresponds to the 7th harmonic, the cross section for the current flow reduces, thus increasing the resistance and causing additional losses and heating.

In the presence of high-order harmonics, it is necessary to take skin effect into account, because it affects the life of cables. In order to overcome this problem, it is possible to use multiple conductor cables or busbar systems formed by more elementary isolated conductors.

Download Schneider Electric’s Cahier Technique ‘Extra losses by skin and proximity effects’ //

Download CT

Go back to Effects of harmonics ↑


4. Voltage distortion

The distorted load current drawn by the nonlinear load causes a distorted voltage drop in the cable impedance. The resultant distorted voltage waveform is applied to all other loads connected to the same circuit, causing harmonic currents to flow in them, even if they are linear loads.

The solution consists in separating the circuits which supply harmonic generating loads from those supplying loads sensitive to harmonics.

Go back to Effects of harmonics ↑


5. Disturbances in the torque of induction motors

Harmonic voltage distortion causes increased eddy current losses in the motors, in the same way as seen for transformers. The additional losses are due to the generation of harmonic fields in the stator, each of which is trying to rotate the motor at a different speed, both forwards (1st, 4th, 7th, …) as well as backwards (2nd, 5th, 8th, …).

High frequency currents induced in the rotor further increase losses.

Go back to Effects of harmonics ↑

Reference // Electrical installation handbook Protection, control and electrical devices by ABB

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

25 Comments


  1. J.Ivan
    Jun 03, 2021

    Absolutely benefit! I always keep following


  2. Meldon
    Mar 28, 2021

    The article provides a lot of of information about harmonics.

    Thankyou so much for the article.


  3. Ricardo Feijó
    Oct 28, 2020

    excellent article, I liked it, very enlightening, congratulations


  4. Ninganna Hosamani
    Oct 26, 2020

    Good Insights on harmonics !!


  5. Venkateshwaran
    Nov 16, 2019

    Good information… Thank you for sharing


  6. Emad Atta
    May 22, 2019

    Thanks


  7. weam
    May 22, 2019

    This is the best explanation . Thanks.


  8. Vijay
    May 22, 2019

    Thanks


  9. Anil Paul Jacob
    May 22, 2019

    Dear Ed. Very useful article especially for the students of EEE and beginners of this harmonics studies. Is it possible to update with a pdf document as other articles


  10. Vinay Haldikar
    May 22, 2019

    Wonderful !!!

    How to download Ref: Electrical installation handbook Protection, control and electrical devices by ABB


  11. Abraham
    May 21, 2019

    good work Edvard


  12. kambiz zamani
    Nov 17, 2018

    Very good . Thanks


  13. Michael S. Olsen
    Jan 30, 2018

    Edvard, I found your article interesting and insightful. It help better clarify several points that I have simply accepted as I always found the a bit confusing of felt uncertain about them. So thanks for helping me become a better engineer.

    That said, grammar and mechanics errors made reading and understanding at several points difficult. I presume by your writing style that English is not you first language. As such, I applaud your dedication to learning one of the world’s most complex and changing languages. Should you wish for help or proofing of your English work I would be happy to assist. It would be an honor to help such a clearly talented man have his work shine as brightly and clearly as his mind.


  14. munibullah wahdy
    Oct 16, 2017

    Hi Edward,

    A good article on harmonics. However, the relation of different waveforms on graphs is not clear. Wonder if it is possible to update this article with this information.

    Regards,
    Munibullah Wahdy


  15. Ivan
    Oct 16, 2017

    Why are we always talking about odd harmonics (3rd, 5th,…) and not about even ones (2nd, 4th,…)?


  16. Rudolf
    Jun 05, 2016

    Great article very informative, keep it up!


  17. Amin jafari
    Feb 09, 2016

    Thank you, how we could compensate this effect?


  18. Keval Pandya
    Feb 03, 2016

    Thank you for the article. (y)


  19. Raoul
    Feb 03, 2016

    I would like to get a copy of the autocad electrical 2016 , I already have the autocad autodesk student version with just architectural , I tried to download the electrical , it keeps saying the .net 4.5 is not installed although I have it already in my computer , please advise ..

    Thanks


    • Abraham
      May 21, 2019

      Raoul, the autiocad electrical full version (by the way it has a 2019 last versio) has to be boughtfrom the dofficial distributor for autocad in your country. here it can be leased with a monthly payment system which includes full support


  20. R.C. Dhing
    Feb 03, 2016

    there is effect of harmonics – generally 3rd, 5th, 7th and some times 9th.
    What are the basic reason of generation and means of control by which these can be controlled or reduced.


  21. akroud nabil
    Jan 28, 2016

    Good article.
    thanks


  22. RAVI KUMAR GAURAV .
    Jan 28, 2016

    Nicely complied. In my view impact on Capacitor banks should in top 5 effects of Harmonics.


  23. Lisa
    Jan 27, 2016

    This is the best explanation of harmonics I’ve come across. Thanks!

Leave a Reply to Ricardo Feijó

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

62  +    =  seventy one

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge