Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / How to improve the power quality with harmonic filters

How To Improve The Power Quality With Harmonic filtersIn electrical plants the loads draw from the network electric power (active) as power supply source (e.g. personal computers, printers, diagnostic equipment, etc.) or convert it into another form of energy (e.g. electrical lamps or stoves) or into mechanical output (e.g. electrical motors). To get this, it is often necessary that the load exchanges with the network (with net null consumption) the reactive energy, mainly of inductive type.

This energy, even if not immediately converted into other forms, contributes to increase the total power flowing through in the electrical network, from the generators, all along the conductors, to the users. To smooth such negative effect, the power factor correction of the electrical plants is carried out.

The power factor correction obtained by using capacitor banks to generate locally the reactive energy necessary for the transfer of electrical useful power, allows a better and more rational technical-economical management of the plants.

Passive Filter

Capacitor banks can be used combined with inductors in order to limit the effects of the harmonics on a network. Actually, the combination capacitor-inductor constitutes a filter for harmonics.

To avoid the negative effects of resonance, it is necessary to insert an inductor in series with a capacitor. By applying an analogous reasoning, it is possible to think of placing in a point of the network a combination of an inductor and a capacitor properly dimensioned in order to get the same resonance frequency of the order of the current harmonic to be eliminated.

In this way, the assembly inductor-capacitor presents a very low reactance in correspondence with the harmonic to be eliminated which shall circulate in the assembly without affecting the whole network.

Passive filter - capacitor connected in series with an inductor
Passive filter - capacitor connected in series with an inductor

Therefore this filter, called passive filter, consists in a capacitor connected in series with an inductor so that the resonance frequency is altogether equal to the frequency of the harmonic to be eliminated. Passive filters, which are defined on a case by case basis, according to a particular harmonic to be filtered, are cost-effective and easy to be connected and put into function.

Active Filter

Active filters instead can automatically eliminate the current harmonics present in a network in a wide range of frequencies. Exploiting power electronic technology, they can inject a system of harmonics able to neutralize those present in the network.

Load current + Active filter current = Clean feeder current
Load current + Active filter current = Clean feeder current

The active filter has the advantage of filtering simultaneously dozens of harmonics and does not involve design costs for dimensioning.

SOURCE: ABB – Power factor correction and harmonic filtering in electrical plants

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

One Comment


  1. Anurag
    Mar 26, 2014

    Excellent portal.

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

fifty  ⁄  10  =  

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge