Search

Premium Membership ♕

Save 15% on PRO Membership plan with the coupon ZTX15 and study specialized LV/MV/HV technical articles and guides/papers.

Home / Technical Articles / Improve power transfer with shunt capacitor banks

Shunt capacitor banks

Shunt capacitor banks are used to an increasing extent at all voltage levels. There are a variety of reasons for this like the growing need for power transfer on existing lines while avoiding transfer of reactive power, better use of existing power systems, improving voltage stability, right-of-way and cost problems, voltage control and compensation of reactive loads.

Improve power transfer with shunt capacitor banks
Improve power transfer with shunt capacitor banks

Thyristor-controlled as well as breaker-switched capacitors are used. Breaker-switched capacitors are installed in distribution, HV and EHV systems. Since detailed studies generally are justified for thyristor-controlled capacitors due to the large cost savings which are possible, the general guidelines in this publication deal only with the protection of breaker-switched equipment by ZnO arresters.

Three-phase capacitor bank sizes vary from a few tenths of MVAr to several hundreds of MVAr. Both ungrounded wye and grounded wye banks are in use.

It is common practice to use ”restrikefree” breakers. However, since many banks are switched on a daily basis, the probability of obtaining high transients associated with capacitor switching increases. Furthermore, the standardized procedure to verify that the breaker is restrike-free includes only a limited number of tests.

The use of arresters not only gives protection if a restrike occurs but also decreases the probability of multiple restrikes since the trapped charge on the capacitors is reduced.

The protection afforded by different arrester protection levels and positioning (such as phase-ground, phase-phase and phaseneutral) against switching overvoltages is dealt with. Arrester energies related to different protection levels and capacitor MVAr ratings are given and the guidance is summarized in a set of diagrams.

Resonance conditions are not discussed since the duty imposed is strongly affected by system conditions and components, grounding etc. It is assumed, therefore, that harmonic and dynamic overvoltages in general are and must be limited by system design and operating procedures.

SOURCE: ABB – Guidelines for selection of surge arresters for shunt capacitor banks

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
Edvard Csanyi - Author at EEP-Electrical Engineering Portal

Edvard Csanyi

Hi, I'm an electrical engineer, programmer and founder of EEP - Electrical Engineering Portal. I worked twelve years at Schneider Electric in the position of technical support for low- and medium-voltage projects and the design of busbar trunking systems.

I'm highly specialized in the design of LV/MV switchgear and low-voltage, high-power busbar trunking (<6300A) in substations, commercial buildings and industry facilities. I'm also a professional in AutoCAD programming.

Profile: Edvard Csanyi

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

ninety nine  −    =  ninety two

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.