Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Learn how to read and analyze control circuits of MV gas insulated switchgear (GIS)

Tripping, disconnector, ground-switch…

Previously, an introductory part of the GIS and its components were discussed to pave the way for the GIS control circuits. Moreover, the single-line diagram example for a double-bus and a single breaker clarifies several concepts that are for the GIS only. It is challenging to comprehend and grasp the control circuits due to the interrelated components and functions that impose additional interlock schemes and control functions.

Learn how to read and analyze control circuits of MV gas insulated switchgear (GIS)
Learn how to read and analyze control circuits of MV gas insulated switchgear (GIS)

Hence, a brief description of drawing tips and drawing examples was elaborated before delving into the actual article topics (control circuits). Broadly, control circuits are categorized into:

  • AC & DC auxiliary circuits
  • DC of secondary (close/trip) for CB, disconnector, and ground switches
  • Indication and alarm circuits
  • SCADA indication and alarm circuits
  • Equipment coil contacts arrangements and components details
  • AC of secondary (CT & PT)

The first group shares similar concepts with the MV switchgear circuits in previous articles, so they were mentioned briefly. The second group includes many circuits-namely, breaker closing circuit, breaker trip circuit, and disconnector/ground switch close/open circuit. The breaker closing circuit requires so many conditions fulfillment before closing.

As a result, it is expected to have a complex circuit as we experienced in the last article.

That being said, the disconnector/ground switch close/open circuits are not less complicated as will have been revealed by the end of this article. The trip circuit and the alarm and indication circuits are also considered. If you have not read the first article, you are encouraged to do so since it is a pre-requisite for this article.

Of course, the MV switchgear two articles are to be covered first for easier understanding. You can consider it as a series of articles that tackle the MV switchgear and then move to the GIS, so the difficulty level increases steadily. However, once you master it, it becomes an invaluable tool for your practical expertise for design, maintenance, and troubleshooting.

Table of contents:

  1. Circuit Breaker Tripping Circuit
  2. Disconnector/Ground Switch
    1. Control Circuit
    2. Interlocking Circuit
    3. Motor Circuit
    4. Double Operation Circuit
  3. Bay Control-Protection Unit (BCPU) and Alarm Circuit
    1. Indication Lamp Circuit
    2. SF6 Gas Pressure Alarm Circuit
    3. Annunciator Alarm Circuit
    4. Bay Control-Protection Unit (BCPU)
  4. Secondary AC Circuits
  5. Summary

1. Circuit Breaker Tripping Circuit

In the previous article, there was a general closing command that must be pressed along with the breaker selector pushbutton to close the breaker in the emergency mode so that any accidental activation of the breaker selector pushbutton does not result in a breaker close. The same philosophy is implemented in the trip circuit.

This is illustrated in Figure 1, where the S1 pushbutton represents the breaker tripping in the emergency mode and K302 is the contactor energized when the general trip command pushbutton is pressed. This is identical to what was witnessed in the closing circuit. Consequently, the coil K12 circuit is completed such that its contactor closes in which the DC supply reaches the trip coil (Y2).

Again, the SF6 condition plays a major role in the trip circuit, too.

The gas pressure low-stage 2 comes into play if the gas pressure is compromised as shown in the figure. The mechanism is exactly like what was in the closing circuit, where the off-delay timer activates the K80 coil in five seconds delay, thereby preventing the breaker tripping command.

Note the breaker has two tripping coils to account for any trip coil failure that might introduce intolerable hazardous events. The supervisory relay is a necessity for circuit integrity. Other modes of operations (local and remote) are simple to trace.

Simply, their circuits go to the BCPU and wait for the trip command; then, it reaches the very same point as the emergency mode does at the K12 contactor.

Figure 1 – Trip Circuit Control

Trip Circuit Control
Figure 1 – Trip Circuit Control (click to expand schematics)

The breaker Q0 is a control element as well as a protective element. The control side was mentioned above, and the protective part is to be discussed next. The contacts that are in parallel inside the dashed-line box represent the breaker failure protection, busbar protection, and two relay panels for the transformer protection. Any function can trip the breaker open should the protection function condition fulfilled.

The breaker failure protection has two contacts: lockout relay (86) and self-reset relay (94).

Premium Membership Required

This technical article/guide requires a Premium Membership. You can choose an annually based Plus, Pro, or Enterprise membership plan. Subscribe and enjoy studying specialized technical articles, online video courses, electrical engineering guides, and papers. With EEP’s premium membership, you get additional essence that enhances your knowledge and experience in low- medium- and high-voltage engineering fields.

Check out each plan’s benefits and choose the membership plan that works best for you or your organization.

Limited time offer! – Save 15% on Pro Membership Plan with discount code LRN15

Log In »Purchase »

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Salem Alshahrani

Electrical engineer (BEE & Meng). Specialized in substation design, especially in LV/MV switchgears and transformers. Passionate in power system planning, analysis, and stability studies.

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

15  −  thirteen  =  

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge