Premium Membership ♕

Save 50% on all EEP Academy courses with Enterprise Membership Plan and study specialized LV/MV/HV technical articles & guides.

Home / Technical Articles / Why remote racking of LV/MV circuit breakers is a smart investment but so rare to see?

Circuit breaker racking

Circuit breaker racking is one of the most prominent exercises in the power system that exposes an operator to risk. A sudden malfunction during the racking process can induce catastrophic consequences to the operator and entire premises. Older breakers with more complex and relatively vulnerable mechanical orientation are more prone to safety problems encountered during racking.

Why remote racking of LV/MV circuit breakers is a smart investment but so rare to see?
Why remote racking of LV/MV circuit breakers is a smart investment but so rare to see?

One of the most talked-about risks during circuit breaker racking is the arc flash phenomena. Arc flashes result from imperfection in the mechanical operation of a circuit breaker while engaging or disengaging. Arc flashes are potentially fatal and disastrous, depending upon the magnitude of current and energy involved.

While there are many maintenance checklist and precautions to minimize the risk of arc flashes, they leave no time to react once they occur. Thus, it is essential to implement an appropriate protective technique to safeguard the operators from potential fatality.

Remote racking of circuit breakers is one of the most effective strategies to minimize or ideally eradicate operators’ fatality rate due to arc flashes. Remote racking of circuit breakers allows the operators to maintain a safe distance while racking the breaker, minimizing the risk of exposure to fatal arc flashes.

Though this method is way more effective than using Personal Protective Equipment (PPE) or other prevalent preventive techniques, it is not yet widely used. In this article, we will contemplate the use of remote racking of circuit breakers and possible reasons for their limited practice.

Table of Contents:

  1. Arc flash and its causes
  2. Various methods for reducing and dealing with arc flash
  3. Implementation of remote racking of circuit breaker and its working mechanism
    1. Advantages of remote racking over other preventive methods
  4. What keeps the remote racking system from being extensively used?
    1. Confusion regarding a retrofit solution
    2. Lack of proper safety training and awareness
    3. Cost factor
  5. Why it’s wise to invest in circuit breaker remote racking?
    1. For a simple yet uncompromised safety measure
    2. To make sure human fatalities and related consequences are minimized
    3. Remote racking is the future of switchgear safety

1. Arc flash and its causes

Arc flash is an unwanted occurrence in an electrical system that is associated with an explosion caused due to a rapid rise in temperature and pressure in the air between electrical conductors that is caused by unwanted electric discharge through the air via non-intentional low impedance path.

Arc flashes usually lead to fires and heat that may result in fatalities. The temperature of an arc flash can reach extremely high value and ignite clothing, burn the skin, cause lung or eyesight damage, or even death based on the distance of impact.

Premium Membership Required

This technical article/guide requires a Premium Membership. You can choose an annually based Plus, Pro, or Enterprise membership plan. Subscribe and enjoy studying specialized technical articles, online video courses, electrical engineering guides, and papers. With EEP’s premium membership, you get additional essence that enhances your knowledge and experience in low- medium- and high-voltage engineering fields.

Check out each plan’s benefits and choose the membership plan that works best for you or your organization.

Good To Know!Save 50% on all video courses by purchasing Enterprise plan.

Log In »Purchase »

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information

Bishal Lamichhane

Electrical Engineer (B.E Electrical, M. Sc Engineering) with specialization in energy systems planning. Actively involved in design and supervision of LV/MV substations, power supply augmentations and electrification for utilities and bulk consumers like airports and commercial entities. An enthusiast and scholar of power systems analysis.

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

seven  +  2  =  

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge