Search

Premium Membership ♕

Save 50% on all EEP Academy courses with Enterprise Membership Plan and study specialized LV/MV/HV technical articles, guides and courses.

Home / Technical Articles / Renewables And The Impact On Environment

Renewable Energy And The Impact On EnvironmentAlternative energy sources, especially with regard to air emissions. The likely life-cycle emissions (taking into account fuel cultivation, harvesting, collection, transportation and processing, as well as power plant construction, operation and decommissioning) from main renewable energy technologies and conventional electricity generation are shown in Tables 2 and 3.

The results are purely indicative but show the variations and relative differences between the various fuel inputs. Life-cycle emissions from renewable energy use are small compared with those from fossil fuel plants. The studies upon which the figures are based did not examine nuclear energy.

Though nuclear power generation does have a major environmental impact, it releases no sulphur dioxide (SO2) or nitrogen oxides (NOx) and little carbon dioxide (CO2). Its life cycle emissions of these gases falls within the ranges shown for non-hydroelectric renewable energy.

Table 2. Life cycle air emissions from renewable energy (g/kWh)

Energy CropsHydroHydroSolarSolarWindGeothermal
Current PracticeFuture PracticeSmall ScaleLarge ScalePhotovoltaicThermal Electric
CO217-2715-1893.6-11.698-16726-387-979
SO20.07-0.160.06-0.080.030.009-0.0240.20-0.340.13-0.270.02-0.090.02
NOx1.1-2.50.35-0.510.070.003-0.0060.18-0.300.06-0.130.02-0.060.28

.
Table 3.
Life cycle air emissions from conventional electricity generation in the United Kingdom

CoalOilGasDiesel
Best Practice*Flue Gas
Desulphurisation
& Low NOx
Best PracticeCombined
Cycle Gas
Turbines
Embedded
CO2955.0987.0818.0430.0772.0
SO211.81.514.21.6
NOx4.32.94.00.512.3

* Not representative of state-of-the-art technology. ETSU Report No. R-88,“Full Fuel Cycle Atmospheric Emissions and Global Warming Impacts from UK Electricity Generation”, HMSO, London.

Environmental impacts

Renewable energy entails a number of other potential environmental impacts. On the negative side, renewable energy can make large tracts of land unusable for competing uses, disrupt marine life, bird life and flora/fauna, and produce visual and noise pollution. Generally though, these potential environmental impacts are site-specific and there are a number of ways to minimise the effects, which are usually small and reversible. There are environmental benefits from renewables other than reduction of greenhouse gas and other air emissions. For example, hydroelectric schemes can improve water supplies and facilitate reclamation of degraded land and habitat.

The use of bioenergy can have many environmental benefits if the resource is produced and used in a sustainable way. If the land from which bioenergy is produced is replanted, bioenergy is used sustainably and the carbon released will be recycled into the next generation of growing plants. The extent to which bioenergy can displace net emissions of CO2, will depend on the efficiency with which it can be produced and used. Bioenergy plants have lower emissions of SO2 than do coal and oil plants, but they may produce more particulate matter.

These emissions are controllable but they increase generating costs. The environmental and social effects of large-scale hydropower are site specific and are the subject of much controversy. Large-scale projects may disturb local ecosystems, reduce biological diversity or modify water quality. They may also cause socio-economic damage by displacing local populations. A number of projects in developing countries have been stalled or scaled down for these reasons; obtaining loans from international lending institutions and banks for major projects has become more difficult. Although these ill effects can be managed and mitigated to some degree, they may affect the future of hydropower in general.

Mini- and micro-hydro systems have relatively modest and localised effects on the environment, but their kWh cost is generally higher. Hydro-power emits some greenhouse gases on a life-cycle basis (especially methane generated by decaying bioenergy in reservoirs), but in most cases far less than the burning of fossil fuels.

Geothermal plant
Geothermal plant

Geothermal plants may release gaseous emissions into the atmosphere during their operation. These gases are mainly carbon dioxide and hydrogen sulphide with traces of ammonia, hydrogen, nitrogen, methane, radon, and the volatile species of boron, arsenic and mercury.
This could slow the future development of geothermal resources. Emissions can be managed through strict regulations and by control methods used by the geothermal industry to meet these regulatory requirements.

Hydrogen sulphide abatement systems reduce environmental damage but are costly to install. Wind-power generation has very low emissions on a life cycle basis, but has a number of environmental effects that may limit its potential.

The most important effects on the environment

Visual Effects

Wind turbines must be in exposed areas and are therefore highly visible. They are considered unsightly by some people, and concerns have increased with the larger size of new generation turbines.

Noise

Wind turbines produce aerodynamic noise, from air passing over the blades and mechanical noise from the moving parts of the turbine, especially the gearbox. Better designs have reduced noise, and research continues. Wind farms developed far from highly populated areas are, by definition, less offensive.

Electromagnetic Interference

Wind turbines may scatter electromagnetic signals causing interference to communication systems. Appropriate siting (avoiding military zones or airports) can minimise this impact.

Bird Safety

Birds get killed when they collide with the rotating blades of a turbine. Migratory species are at higher risk than resident species. Siting the turbines away from migratory routes reduces the impact.

Copyright Notice

This technical article is protected by U.S. and international copyright laws. Reproduction and distribution of PDF version of this technical article to websites such as Linkedin, Scribd, Facebook and others without written permission of the sponsor is illegal and strictly prohibited.

© EEP-Electrical Engineering Portal.

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
Edvard Csanyi - Author at EEP-Electrical Engineering Portal

Edvard Csanyi

Hi, I'm an electrical engineer, programmer and founder of EEP - Electrical Engineering Portal. I worked twelve years at Schneider Electric in the position of technical support for low- and medium-voltage projects and the design of busbar trunking systems.

I'm highly specialized in the design of LV/MV switchgear and low-voltage, high-power busbar trunking (<6300A) in substations, commercial buildings and industry facilities. I'm also a professional in AutoCAD programming.

Profile: Edvard Csanyi

One Comment


  1. Edvard
    Jan 08, 2011

    Whatever impacts on environment are located from renewable energy sources – it’s not really important, since fossil-fuel energy will be gone in few years/decades. I agree, there are impacts, but it’s nothing comparing to impacts that fossil fuel plants has to envorinment.

    We won’t ask so many questions when fossil fuel is gone, won’t we?

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

  ×  five  =  15

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.