Search

Premium Membership

Get access to premium HV/MV/LV technical articles, technical guides & papers. Apply a 20% discount code: 99AF8 for a 1-year plan!

Formulas

In any three phase system, the line currents Ia, Ib and Ic may be expressed as the phasor sum of:

– a set of balanced positive phase sequence currents Ia1, Ib1 and Ic1 (phase sequence a-b-c),

– a set of balanced negative phase sequence currents Ia2, Ib2 and Ic2 (phase sequence a-c-b),

– a set of identical zero phase sequence currents Ia0, Ib0 and Ic0 (cophasal, no phase sequence).

The positive, negative and zero sequence currents are calculated from the line currents using:

Ia1 = (Ia + hIb + h2Ic) / 3

Ia2 = (Ia + h2Ib + hIc) / 3

Ia0 = (Ia + Ib + Ic) / 3

The positive, negative and zero sequence currents are combined to give the line currents using:

Ia = Ia1 + Ia2 + Ia0

Ib = Ib1 + Ib2 + Ib0 = h2Ia1 + hIa2 + Ia0

Ic = Ic1 + Ic2 + Ic0 = hIa1 + h2Ia2 + Ia0

The residual current Ir is equal to the total zero sequence current:

Ir = Ia0 + Ib0 + Ic0 = 3Ia0 = Ia + Ib + Ic = Ie

which is measured using three current transformers with parallel connected secondaries.

Ie is the earth fault current of the system.

Similarly, for phase-to-earth voltages Vae, Vbe and Vce, the residual voltage Vr is equal to the total zero sequence voltage:

Vr = Va0 + Vb0 + Vc0 = 3Va0 = Vae + Vbe + Vce = 3Vne

which is measured using an earthed-star / open-delta connected voltage transformer.

Vne is the neutral displacement voltage of the system.

The h-operator

The h-operator (1Ð120°) is the complex cube root of unity:

h = – 1 / 2 + jÖ3 / 2 = 1Ð120° = 1Ð-240°

h2 = – 1 / 2 – jÖ3 / 2 = 1Ð240° = 1Ð-120°

Some useful properties of h are:

1 + h + h2 = 0

h + h2 = – 1 = 1Ð180°

h – h2 = jÖ3 = Ö3Ð90°

h2 – h = – jÖ3 = Ö3Ð-90°

NOTATION
The symbol font is used for some notation and formulae. If the Greek symbols for alpha beta delta do not appear here [ a b d ] the symbol font needs to be installed for correct display of notation and formulae.
B
C
E
f
G
h
I
j
L
P
Q
susceptance
capacitance
voltage source
frequency
conductance
h-operator
current
j-operator
inductance
active power
reactive power
[siemens, S]
[farads, F]
[volts, V]
[hertz, Hz]
[siemens, S]
[1Ð120°]
[amps, A]
[1Ð90°]
[henrys, H]
[watts, W]
[VAreactive, VArs]
Q
R
S
t
V
W
X
Y
Z
f
w
quality factor
resistance
apparent power
time
voltage drop
energy
reactance
admittance
impedance
phase angle
angular frequency
[number]
[ohms, W]
[volt-amps, VA]
[seconds, s]
[volts, V]
[joules, J]
[ohms, W]
[siemens, S]
[ohms, W]
[degrees, °]
[rad/sec]

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information

Leave a Comment

Tell us what you're thinking... we care about your opinion!

Subscribe to Weekly Digest

Get email alert whenever we publish new electrical guides and articles.

New Online Training Courses

World class online training for electrical engineers and industrial electricians.