Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Formulas

The impedance Z of a resistance R in series with a reactance X is:
Z = R + jX

Rectangular and polar forms of impedance Z:
Z = R + jX = (R2 + X2)½Ðtan-1(X / R) = |Z|Ðf = |Z|cosf + j|Z|sinf

Addition of impedances Z1 and Z2:
Z1 + Z2 = (R1 + jX1) + (R2 + jX2) = (R1 + R2) + j(X1 + X2)

Subtraction of impedances Z1 and Z2:
Z1 – Z2 = (R1 + jX1) – (R2 + jX2) = (R1 – R2) + j(X1 – X2)

Multiplication of impedances Z1 and Z2:
Z1 * Z2 = |Z1|Ðf1 * |Z2|Ðf2 = ( |Z1| * |Z2| )Ð(f1 + f2)

Division of impedances Z1 and Z2:
Z1 / Z2 = |Z1|Ðf1 / |Z2|Ðf2 = ( |Z1| / |Z2| )Ð(f1 – f2)

In summary:

  • use the rectangular form for addition and subtraction,
  • use the polar form for multiplication and division.
NOTATION
The symbol font is used for some notation and formulae. If the Greek symbols for alpha beta delta do not appear here [ a b d ] the symbol font needs to be installed for correct display of notation and formulae.
B
C
E
f
G
h
I
j
L
P
Q
susceptance
capacitance
voltage source
frequency
conductance
h-operator
current
j-operator
inductance
active power
reactive power
[siemens, S]
[farads, F]
[volts, V]
[hertz, Hz]
[siemens, S]
[1Ð120°]
[amps, A]
[1Ð90°]
[henrys, H]
[watts, W]
[VAreactive, VArs]
Q
R
S
t
V
W
X
Y
Z
f
w
quality factor
resistance
apparent power
time
voltage drop
energy
reactance
admittance
impedance
phase angle
angular frequency
[number]
[ohms, W]
[volt-amps, VA]
[seconds, s]
[volts, V]
[joules, J]
[ohms, W]
[siemens, S]
[ohms, W]
[degrees, °]
[rad/sec]

Premium Membership

Get access to premium HV/MV/LV technical articles, advanced electrical engineering guides, papers, and much more! It will help you to shape up your technical skills in your everyday life as an electrical engineer.
50% Discount 💥 - Save 50% on all 90+ video courses with Enterprise Membership plan.

More Information

One Comment


  1. mg_wanas
    Jun 03, 2013

    Thanks

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

96  ⁄    =  sixteen

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge