Search

Premium Membership ♕

Experience matters. Learn from experienced electrical engineers. Study specialized LV/HV technical articles, papers and courses.

Formulas

For each system parameter, per-unit value is equal to the actual value divided by a base value:

Epu = E / Ebase

Ipu = I / Ibase

Zpu = Z / Zbase

Select rated values as base values, usually rated power in MVA and rated phase voltage in kV:

Sbase = Srated = Ö3ElineIline

Ebase = Ephase = Eline/ Ö3

The base values for line current in kA and per-phase star impedance in ohms/phase are:

Ibase = Sbase / 3Ebase ( = Sbase / Ö3Eline)

Zbase = Ebase / Ibase = 3Ebase2 / Sbase ( = Eline2 / Sbase)

Note that selecting the base values for any two of Sbase, Ebase, Ibase or Zbase fixes the base values of all four. Note also that Ohm’s Law is satisfied by each of the sets of actual, base and per-unit values for voltage, current and impedance.

Transformers

The primary and secondary MVA ratings of a transformer are equal, but the voltages and currents in the primary (subscript 1) and the secondary (subscript 2) are usually different:

Ö3E1lineI1line = S = Ö3E2lineI2line

Converting to base (per-phase star) values:

3E1baseI1base = Sbase = 3E2baseI2base

E1base / E2base = I2base / I1base

Z1base / Z2base = (E1base / E2base)2

The impedance Z21pu referred to the primary side, equivalent to an impedance Z2pu on the secondary side, is:

Z21pu = Z2pu(E1base / E2base)2

The impedance Z12pu referred to the secondary side, equivalent to an impedance Z1pu on the primary side, is:

Z12pu = Z1pu(E2base / E1base)2

Note that per-unit and percentage values are related by:

Zpu = Z% / 100

NOTATION
The symbol font is used for some notation and formulae. If the Greek symbols for alpha beta delta do not appear here [ a b d ] the symbol font needs to be installed for correct display of notation and formulae.
B
C
E
f
G
h
I
j
L
P
Q
susceptance
capacitance
voltage source
frequency
conductance
h-operator
current
j-operator
inductance
active power
reactive power
[siemens, S]
[farads, F]
[volts, V]
[hertz, Hz]
[siemens, S]
[1Ð120°]
[amps, A]
[1Ð90°]
[henrys, H]
[watts, W]
[VAreactive, VArs]
Q
R
S
t
V
W
X
Y
Z
f
w
quality factor
resistance
apparent power
time
voltage drop
energy
reactance
admittance
impedance
phase angle
angular frequency
[number]
[ohms, W]
[volt-amps, VA]
[seconds, s]
[volts, V]
[joules, J]
[ohms, W]
[siemens, S]
[ohms, W]
[degrees, °]
[rad/sec]

Premium Membership

Get access to premium HV/MV/LV technical articles, advanced electrical engineering guides, papers, and much more! It will help you to shape up your technical skills in your everyday life as an electrical engineer.
50% Discount 💥 - Save 50% on all 90+ video courses with Enterprise Membership plan.

More Information

4 Comments


  1. Randy
    Nov 30, 2022

    How can i get the actual value of a voltage


  2. Younes CHERNI
    Aug 18, 2021

    Hi,
    Please do you have any PER UNIT courses ? pd file and exercices ?
    Thanks a lot


  3. Rex Marson
    May 12, 2021

    What the hell is “Ö3”? I never heard of it!


    • Abi
      May 22, 2021

      It is root(3)

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

two  +    =  nine

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.