Search

Premium Membership ♕

Save 10% on Pro Membership Plan with coupon DEC10 and study specialized LV/MV/HV technical articles and papers.

Home / Technical Articles / Basics of DC Motors For Electrical Engineers – Beginners

General about DC motors

Separate field excitation DC motors are still sometimes used for driving machines at variable speed. These motors are very easy to miniaturize, and essential for very low powers and low voltages.

Basics of DC Motors For Electrical Engineers – Beginners
Basics of DC Motors For Electrical Engineers – Beginners (on photo: Small DC motor; via Wikimedia)

They are also particularly suitable, up to high power levels (several megawatts), for speed variation with simple, uncomplicated electronic technologies for high performance levels (variation range commonly used from 1 to 100).

Their characteristics also enable accurate torque regulation, when operating as a motor or as a generator. Their nominal rotation speed, which is independent of the line supply frequency, is easy to adapt by design to suit all applications.

They are however less rugged than asynchronous motors and much more expensive, in terms of both hardware and maintenance costs, as they require regular servicing of the commutator and the brushes.


Construction of DC motor //

DC motor construction parts
DC motor construction parts

A DC motor is composed of the following main parts:

Field coil or stator

This is a non-moving part of the magnetic circuit on which a winding is wound in order to produce a magnetic field. The electro-magnet that is created has a cylindrical cavity between its poles.

Armature or rotor

This is a cylinder of magnetic laminations that are insulated from one another and perpendicular to the axis of the cylinder. The armature is a moving part that rotates round its axis, and is separated from the field coil by an air gap. Conductors are evenly distributed around its outer surface.

Commutator and brushes

The commutator is integral with the armature. The brushes are fixed. They rub against the commutator and thus supply power to the armature conductors.


Operating principle

When the field coil is energized, it creates a magnetic field (excitation flux) in the air gap, in the direction of the radii of the armature. This magnetic field “enters” the armature from the North pole side of the field coil and “exits” the armature from the South pole side of the field coil.

When the armature is energized, currents pass through the conductors located under one field coil pole (on the same side of the brushes) in the same direction and are thus, according to Laplace’s law, subject to a force.

The conductors located under the other pole are subject to a force of the same intensity in the opposite direction. The two forces create a torque which causes the motor armature to rotate (see Figure 1).

Production of torque in a DC motor
Figure 1 – Production of torque in a DC motor

When the motor armature is powered by a DC or rectified voltage supply U, it produces back emf E whose value is:

E = U – RI

where RI represents the ohmic voltage drop in the armature.

The back emf E is linked to the speed and the excitation by the equation:

E = k ω Φ

Where:

  • k is a constant specific to the motor
  • ω is the angular speed
  • Φ is the flux

This equation shows that at constant excitation the back emf E (proportional to ω) is an image of the speed.

The torque is linked to the field coil flux and the current in the armature by the equation:

T = k Φ I

If the flux is reduced, the torque decreases.

There are two methods for increasing the speed //

1. Either increase the back emf E, and thus the supply voltage at constant excitation: this is known as “constant torque” operation.

2. Or decrease the excitation flux, and thus the excitation current, while keeping the supply voltage constant: this is known as “reduced flux” or “constant power” operation. This operation requires the torque to decrease as the speed increases (see Figure 2 below). However, for high reduced flux ratios this operation requires specially adapted motors (mechanically and electrically) to overcome switching problems.

Torque/speed curves for a separate field excitation motor
Figure 2 – Torque/speed curves for a separate field excitation motor

The operation of this type of device (DC motor) is reversible //

If the load opposes the rotation movement (the load is said to be resistive), the device provides a torque and operates as a motor.

If the load is such that it tends to make the device rotate (the load is said to be driving) or it opposes the slow-down (stopping phase of a load with a certain inertia), the device provides electrical energy and operates as a generator.


Various types of DC motor

Diagrams of the various types of DC motor
Figure 3 – Diagrams of the various types of DC motor

Parallel excitation (separate or shunt)

The coils, armature and field coil are connected in parallel or supplied via two sources with different voltages in order to adapt to the characteristics of the machine (e.g.: armature voltage 400 volts and field coil voltage 180 volts).

The direction of rotation is reversed by inverting one or other of the windings, generally by inverting the armature voltage due to the much lower time constants. Most bidirectional speed drives for DC motors operate in this way.

DC shunt motor
DC shunt motor (photo credit: edisontechcenter.org)

Series wound

The design of this motor is similar to that of the separate field excitation motor. The field coil is connected in series to the armature coil, hence its name. The direction of rotation can be reversed by inverting the polarities of the armature or the field coil.

This motor is mainly used for traction, in particular on trucks supplied by battery packs. In railway traction the old TGV (French high-speed train) motor coaches used this type of motor. More recent coaches use asynchronous motors.

Compound wound (series-parallel excitation)

This technology combines the qualities of the series wound motor and the shunt wound motor. This motor has two windings per field coil pole. One is connected in parallel with the armature. A low current (low in relation to the working current) flows through it. The other is connected in series.

It is an added flux motor if the ampere turns of the two windings add their effects. Otherwise it is a negative flux motor. But this particular mounting method is very rarely used as it leads to unstable operation with high loads.

Compound wound DC motor
Compound wound DC motor (photo credit: lucas-nuelle.com)

Open DC motor – School project (VIDEO)

Here we have an open DC motor with permanent magnet for the field. An old armature from a faulty hedge trimmer was used. As it was for a school project The following topics had to be covered.

  • Chemical energy – We used a lead acid battery
  • Kinetic energy – We got the armature rotating
  • Noise – We got audio from the speaker
  • Heating – We got some heating in the armature, and commutator bars
  • Light – We made a special LED driven via coil
  • Magnetic – We established that the armature won’t rotate without the magnet underneath.


Cant see this video? Click here to watch it on Youtube.

Reference // Cahier technique no. 207 – Electric motors – Schneider Electric

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
Edvard Csanyi - Author at EEP-Electrical Engineering Portal

Edvard Csanyi

Hi, I'm an electrical engineer, programmer and founder of EEP - Electrical Engineering Portal. I worked twelve years at Schneider Electric in the position of technical support for low- and medium-voltage projects and the design of busbar trunking systems.

I'm highly specialized in the design of LV/MV switchgear and low-voltage, high-power busbar trunking (<6300A) in substations, commercial buildings and industry facilities. I'm also a professional in AutoCAD programming.

Profile: Edvard Csanyi

9 Comments


  1. Abdur rehman
    Mar 29, 2019

    So nice


  2. koshika gupta
    Apr 07, 2017

    wow..thanks for the article this helped a lot …for my exam


  3. romar durero
    Jan 31, 2017

    Hi Sir Edvard,

    Good day.

    Thank you for your article, It is really helpful. Can I use this article as a reference? Hope you can come back to me sir.

    Warm regards,
    Romar


  4. Harri
    Aug 24, 2015

    This article has been written totally technically and I have gain lots of knowledge about dc motors from this article.


  5. ANAND KUMAR
    Jun 26, 2015

    good


  6. Sunil More
    Jun 17, 2015

    The article is well written. However, I agree with Mr. Derek. You can see that the machine is not a DC Machine as commutator is missing! Edvard, please replace with a picture of DC machine.


    • Edvard
      Jun 17, 2015

      You’re right Derek, it was a wrong picture. I fixed it. Thank you!


  7. SUMEET
    Jun 16, 2015

    Seriously speaking hats off to you. you have great knowledge of electrical engineering & you have make me feel proud as an electrical engineer. keep it up man.

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

three  ⁄    =  one

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.