Search

Premium Membership

Get access to premium HV/MV/LV technical articles, technical guides & papers. Apply a 20% discount code: 99AF8 for a 1-year plan!

Home / Download Center / Electrical Engineering Books and Technical Guides / Power substation guides / Handbook for application of neutral earthing resistors (NERs) at the substation

Electrical connections for NERs

There are two main approaches generally adopted when applying impedance earthing techniques: one NER per transformer unit and one NER per substation serving one or more transformer unit(s). For one NER per transformer unit the maximum 11 kV earth fault current will depend on the number of transformers operated in parallel (since the associated NER’s are also effectively connected in parallel).

Handbook for application of neutral earthing resistors (NERs) at the substation
Handbook for application of neutral earthing resistors (NERs) at the substation

Refer to Figure 1 (a), (b), (c), (d).

Where one NER serves all the transformers at the substation, the maximum 11 kV earth fault current is usually independent of the number of transformers and is determined largely by the NER value.

In a 33/11 kV substation with one NER connected to a number of transformers it can be shown that for values of NER greater than approximately 3-4 ohms the available earth fault current converges to a constant value for an earth fault close in to the substation independent of the number of transformers in parallel service.

The following table outlines the merits/demerits of each type of NER connection.

One NER per transformer unit One NER per substation serving one
or more transformer unit(s)
Easier maintenance in that each transformer/resistor can be withdrawn from service as a unit if required Requires consideration of switching and isolation switching and isolation arrangements for allowing safe working on units still in service.
More NERs per substation, hence higher costs. Only one NER per substation, hence lowest cost. Also more suitable where restricted space is a problem.
Higher earth fault current levels. Earth fault current varies depending on the number of transformers in parallel. Lower earth fault current levels. Earth Fault Current not dependent on the number of transformers in service. Essentially fixed level of earth fault current.

The choice between the two cases is mainly determined by the choice of NER. Early applications of neutral resistance involved liquid resistors which require regular routine maintenance. Where these units are associated with non-dual rated transformers, one resistor per transformer has generally been used.

The single resistor per substation alternative has been adopted by power authorities in the UK (and at Christchurch, N.Z. and in Victoria, Australia). Where the NER has a low maintenance requirement and can be switched out of service for brief periods without loss of supply a single NER can be a practical solution.

Associated with NER installation is the requirement for bypassing and isolating, arising from testing and maintenance considerations.

The preferred solution is to interlock the NER isolation and bypass switches in such a way as to make it impossible to accidentally disconnect the neutral point from earth.

Multiple NER’s, One Per Transformer; b) Single NER, One Per Substation; c) Transpower Bulk Supply Point - Retrofit Example One NER Per Transformer; d) Transpower Bulk Supply Point - New Practice One NER Per Earthing Transformer
Figure 1 – a) Multiple NER’s, One Per Transformer; b) Single NER, One Per Substation; c) Transpower Bulk Supply Point – Retrofit Example One NER Per Transformer; d) Transpower Bulk Supply Point – New Practice One NER Per Earthing Transformer

Although NER’s will operate for most of their life at or near earth potential, they have to be treated as high voltage devices in terms of insulation rating, testing and maintenance. The connection arrangement chosen must allow for routine servicing or repair of the NER at some future date after commissioning.


Installation of NER(s)

Two distinct situations arise depending on whether an NER is being retrofitted to an existing transformer or a new installation is being constructed with impedance earthing provided in the design.


Retrofit of an NER

In the retrofitting case, space limitations may be significant. During a phase to earth fault, the NER and associated connection equipment is subject to voltages up to at least the normal phase to neutral system voltage (e.g. 6350 volts for an 11 kV system).

It follows, therefore, that NER’s and connecting equipment should be designed and constructed as normal HV equipment and appropriate clearances should be observed.

New Installations incorporating NER’s

In a brand new installation space may still be limited and this may influence the type of NER employed. If liquid resistors are to be used, dependant on climatic conditions, it may be desirable to provide a sheltered environment to reduce standing heating losses.

Other types of resistors may benefit from improved air flow to attain a suitable heat dissipation rating.

Title: Handbook for application of neutral earthing resistors or reactors (NERs) at the substation – The New Zealand Committee for the Co-ordination of Power and Telecommunication Systems Inc.
Format: PDF
Size: 1.6 MB
Pages: 98
Download: Right here | Get Download Updates | Get Premium Membership
Handbook for application of neutral earthing resistors (NERs) at the substation
Handbook for application of neutral earthing resistors (NERs) at the substation

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information

2 Comments


  1. Dionisio Urbina Jr
    Apr 05, 2020

    Fluctuation normally a problem from the distribution utility because the incoming voltage is not stable. I suggest to install a automatic voltage regulator in primary line side after the service drop


  2. Adel Ibrahim
    Mar 22, 2020

    I have a problem in the factory there is a fluctuation in the main electricity source of 22 kVA, and this leads to the stoppage of production lines and consequently an increase in the amount of waste,
    This is repeated permanently
    What are the technical solutions that can be taken to avoid this problem?

Leave a Comment

Tell us what you're thinking... we care about your opinion!

Subscribe to Weekly Digest

Get email alert whenever we publish new electrical guides and articles.

Experience In LV/MV/HV projects

Join our Premium Membership and get access to advanced articles and papers.