Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: LRN15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Technical analysis of LED light

Technical analysis of LED lightA Light Emitting Diode (LED) is a semiconductor device which converts electricity into light. Each diode is about 1/4 inch in diameter and uses about ten milliamps to operate at about a tenth of a watt. LEDs are small in size, but can be grouped together for higher intensity applications.

LED fixtures require a driver which is analogous to the ballast in fluorescent fixtures. The drivers are typically built into the fixture (like fluorescent ballasts) or they are a plug transformer for portable (plug‐in) fixtures. The plug‐in transformers allow the fixture to run on standard 120 volt alternating current (AC), with a modest (about 15 to 20 percent) power loss.

The efficacy of a typical residential application LED is approximately 20 lumens per watt (LPW). Incandescent bulbs have an efficacy of about 15 LPW and compact fluorescents (Energy saver Bulbs) are about 60 LPW, depending on the wattage and lamp type. LEDs are better at placing light in a single direction than incandescent or fluorescent bulbs.

Because of their directional output, they have unique design features that can be exploited by clever designs. LED strip lights can be installed under counters, in hallways, and in staircases; concentrated arrays can be used for room lighting.

Waterproof, outdoor fixtures are also available. Some manufacturers consider applications such as gardens, walkways, and decorative fixtures outside garage doors to be the most cost‐efficient. LED lights are more rugged and damage‐resistant than compact fluorescents and incandescent bulbs. LED lights don’t flicker.

They are very heat sensitive; excessive heat or inappropriate applications dramatically reduce both light output and lifetime. Uses include:

  • Task and reading lamps
  • Linear strip lighting (under kitchen cabinets)
  • Recessed lighting/ceiling cans
  • Porch/outdoor/landscaping lighting
  • Art lighting
  • Architectural lighting
  • Night lights
  • Stair and walkway lighting
  • Pendants and overhead
  • Retrofit bulbs for lamps

Attributes

Individual LEDs are considerably more efficient; however, the lamp or fixture design is reduced by the driver and electronics. In addition, LEDs do not produce heat like incandescent bulbs.

LEDs last considerably longer than incandescent or fluorescent lighting. LEDs don’t typically burn out like traditional lighting, but rather gradually decrease in light output. Their “useful life” is defined by the Alliance for Solid‐State Illumination Systems and Technologies (ASSIST) as the time it takes until 70% of initial light output is reached, often 50,000 hours.

They are resistant to thermal and vibrational shocks and perform well when subjected to frequent on‐off cycling.

Light SourceRange of Typical Rated life
(hours)*
(varies by specific lamp type)
Estimated Usefull Life (L70)
Incandescent750 – 2000
Halogen incandescent3000 – 4000
Compact fluoroscent (CFL)8000 – 10.000
Metal halide7.500 – 20.000
Linear fluoroscent20.000 – 30.000
High Power Light LED35.000 – 50.000

* Source lamp manufacturer data

No additional tools or training are required for installation of LED fixtures.

Initial Cost

The biggest limitation to LED for common residential use is the cost of manufacturing due to still‐limited production runs. Manufacturers claim production will increase considerably in the near future, further lowering prices. Currently, there is a limited number of LED fixture manufactures, but this is changing.

Retrofit bulbs range from Rs. 200/= to Rs. 850/= for night lights and small lamps.

Operational Cost

The cost savings of LEDs can be found in smaller wattage lamps or for applications that take advantage of their longevity, such as difficult to reach places. They are also advantageous for dimmable fixtures, since dimmable fluorescents are expensive.

Installation

The small size of LED lights encourages a variety of design options. White LED lamps are available with Edison (screw‐in type) bases to retrofit existing fixtures. There are LED strips that can be used under cabinets. In addition, outdoor landscaping fixtures are available.

Cons and Pros of LED

LED lamps have many advantages over traditional lighting methods. These include:

  • Low energy consumption – retrofit bulbs range from 0.83 to 7.3 Watts
  • Long service life – LED bulbs can last up to 80,000 hours
  • Durable – LED bulbs are resistant to thermal and vibrational shocks and turn on instantly from ‐ 40C° to 185C°, making them ideal for applications subject to frequent on‐off cycling, such as garages and basements
  • Directional distribution of light – good for interior task lighting
  • No infrared or ultraviolet radiation – excellent for outdoor use because UV light attracts bugs
  • Safety and environmentally conscious – LEDs contain no mercury and remain cool to the touch
  • Fully dimmable – LEDs do not change their color tint when dimmed unlike incandescent lamps that turn yellow
  • No frequency interference – no ballast to interfere with radio and television signals
  • Range of color – LEDs can be manufactured produce all colors of the spectrum without filters, they can also produce white light in a variety of color temperatures

There are some current disadvantages to LED lighting:

  • LEDs are currently more expensive than more conventional lighting technologies, and may be hard to locate
  • LED is very heat sensitive. Excessive heat or inappropriate applications dramatically reduce both light output and lifespan
  • LEDs typically cast light in one direction at a narrow angle compared to incandescent or fluorescent lamps so lenses or reflectors are needed in fixtures to broaden the beam (if desired)
RESOURCE: Solar LED Lighting System

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
author-pic

Edvard Csanyi

Electrical engineer, programmer and founder of EEP. Highly specialized for design of LV/MV switchgears and LV high power busbar trunking (<6300A) in power substations, commercial buildings and industry facilities. Professional in AutoCAD programming.

2 Comments


  1. Faisal
    Aug 18, 2023

    Hi,
    I am facing some challenges on industrial lighting . Can you please share your contact detail so we will discuss in details. Thanks


  2. [email protected]
    May 29, 2021

    Dear Mr. Edvard,
    Thanks for this great and useful article. However, what is your recommendation nowadays for a lighting system for Electrical Substation? and are there any requirements or standards regarding LED lighting systems in the Substation?

    Regards,
    Ahmed

Leave a Reply to [email protected]

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

  ⁄  one  =  3

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

Subscribe to Weekly Newsletter

Subscribe to our Weekly Digest newsletter and receive free updates on new technical articles, video courses and guides (PDF).
EEP Academy Courses - A hand crafted cutting-edge electrical engineering knowledge