Search

Premium Membership ♕

Save 10% on Pro Membership Plan with coupon DEC10 and study specialized LV/MV/HV technical articles and papers.

Formulas

The synchronous rotational speed ns and synchronous angular speed ws of a machine with p pole pairs running on a supply of frequency fs are:
ns = 60fs / p
ws = 2pfs / p

The output power Pm for a load torque Tm is:
Pm = wsTm

The rated load torque TM for a rated output power PM is:
TM = PM / ws = PMp / 2pfs = 60PM / 2pns

Synchronous Generator
For a synchronous generator with stator induced voltage Es, stator current Is and synchronous impedance Zs, the terminal voltage V is:
V = Es – IsZs = Es – Is(Rs + jXs)
where Rs is the stator resistance and Xs is the synchronous reactance

Synchronous Motor
For a synchronous motor with stator induced voltage Es, stator current Is and synchronous impedance Zs, the terminal voltage V is:
V = Es + IsZs = Es + Is(Rs + jXs)
where Rs is the stator resistance and Xs is the synchronous reactance

Note that the field excitation of a parallelled synchronous machine determines its power factor:

  • an under-excited machine operates with a leading power factor,
  • an over-excited machine operates with a lagging power factor.

The field excitation of an isolated synchronous generator determines its output voltage.

NOTATION
The symbol font is used for some notation and formulae. If the Greek symbols for alpha beta delta do not appear here [ a b d ] the symbol font needs to be installed for correct display of notation and formulae.
B
E
f
G
I
j
k
m
N
n
P
p
R
susceptance
induced voltage
frequency
conductance
current
j-operator
coefficient
number of phases
number of turns
rotational speed
power
pole pairs
resistance
[siemens, S]
[volts, V]
[hertz, Hz]
[siemens, S]
[amps, A]
[1Ð90°]
[number]
[number]
[number]
[revs/min]
[watts, W]
[number]
[ohms, W]
S
s
T
V
X
Y
Z
d
F
f
h
q
w
voltamperes
slip
torque
terminal voltage
reactance
admittance
impedance
loss angle
magnetic flux
phase angle
efficiency
temperature
angular speed
[volt-amps, VA]
[per-unit]
[newton-metres, Nm]
[volts, V]
[ohms, W]
[siemens, S]
[ohms, W]
[degrees, °]
[webers, Wb]
[degrees, °]
[per-unit]
[centigrade, °C]
[radians/sec]

Premium Membership

Get access to premium HV/MV/LV technical articles, advanced electrical engineering guides, papers, and much more! It will help you to shape up your technical skills in your everyday life as an electrical engineer.
50% Discount 💥 - Save 50% on all 90+ video courses with Enterprise Membership plan.

More Information

4 Comments


  1. akash
    Aug 11, 2014

    i think there is an error in this article. a synchronous motor in under-excited mode has lagging power factor and during over-excited mode has leading power factor. they mentioned it in reverse.


  2. puppala
    Apr 06, 2013

    why the alternators rated power factor is 0.8 lag only.
    why we are not producing 0.99 pf lag or unity induction motors.
    if possible give a technical article over the above said.
    The data u are giving is most useful to the EE.
    thanks and regards
    Ganesh


  3. Upendra
    Feb 17, 2013

    How is the generation voltage of generators like 0.4, 6.6, 11, 13.2 kv are selected for design?

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

thirty two  +    =  39

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.