Search

Premium Membership ♕

Limited Time Offer: Save 15% on PRO Plan with discount code: RLC15 and study specialized LV/MV/HV technical articles and studies.

Home / Technical Articles / Current and voltage digital transformation in a modern substation protection and automation

Fully digital substation

Developments in communication have done much to realize the digital substation, but to realize a full digital substation it is necessary to have everything in digital form. Whilst much substation protection, control, and automation technology has always been digital (trip signals, interlocking signals, etc.), the principal power system inputs of voltage and current have traditionally been presented in analogue form.

Current and voltage digital transformation in a modern substation protection and automation
Current and voltage digital transformation in a modern substation protection and automation

It has been traditional to present scaled versions of power system currents and voltages to measuring devices, protective relays etc. Scaled versions can easily be produced using conventional electrical transformers, although capacitor dividers may be additionally employed for transforming very high voltages.

Let’s continue the discussion by following the topics which are suited to GIS substations:

  1. Conventional and Non-Conventional Instrument Transformers (NCIT)
    1. Benefits of NCIT
  2. Merging Unit
    1. Merging Unit Time Synchronisation
  3. Conclusions

1. Conventional and Non-Conventional Instrument Transformers (NCIT)

Conventional transformers based on iron cores introduce measurement errors. Due to the wide dynamic range of current signals on power systems, current transformers for protection need large cores to avoid saturation under fault conditions.

Due to the nature of the magnetic core material, however, these large cores produce significant errors at nominal current, which renders them impractical for metering purposes.

Therefore metering-class transformers need to be introduced resulting in increasing costs.

The iron core is a source of inaccuracy due to the need to magnetize the core, as well as the effect of flux remanence, flux leakage, eddy current heating, etc.

Conventional wired 1A/5A current transformers (CT) circuits have thermal overload constraints and pose increasing burdens on the core as cross-site wire run lengths increase.

This can degrade protection performance, potentially leading to the need to duplicate CTs. Conventional voltage transformer (VT) circuits may experience ferro-resonance phenomena, with thermal overstress resulting. Capacitor voltage transformers (CVT) can produce high frequency interference signals.

GIS up to 145 kV Switchgear bay (with conventional Instrument Transformer)
Figure 1 – Siemens GIS up to 145 kV Switchgear bay (with conventional Instrument Transformer)

Techniques that do not require the iron core of conventional transducers can overcome the limitations. The solutions use different sensor technologies such as optical and Rogowski coils. In practical implementations, the techniques require sophisticated solutions employing digital signal processors and microprocessors in numerical products.

Since such solutions are eminently able to support digital communications, it is a logical progression to present numerical representations of the measured quantities to other substation devices via communication links, rather than reproducing scaled analogue waveforms.

This presentation of analogue power system quantities in the form of standardized digital communication signals is the final element in realizing the digital substation.

Solutions providing signal transformation based on technology other than wound transformers are often referred to as non-conventional instrument transformers (NCIT), and the devices that provide the standardized digital communication equivalents of the power system signals are referred to as
merging units.

GIS up to 145 kV Switchgear bay (with Non-conventional Instrument Transformer)
Figure 2 – Siemens GIS up to 145 kV Switchgear bay (with Non-conventional Instrument Transformer)

NCIT technologies may be based on optical techniques, or Rogowski coils, and overcome the limitation of iron-cored transformers by delivering:

  1. Single devices providing measurement class accuracy with dynamic ranges also capable of faithfully reproducing fault currents.
  2. Reliable, repeatable accuracy.
  3. High measurement bandwidth for rated frequency, harmonics, and sub-harmonics.
  4. Low electrical stress insulation – no premature ageing, moisture ingress, or risk of explosion.
As well as having a lower risk of explosion, NCIT devices are also inherently safer since they cannot be ‘open-circuited’.

An NCIT device based on Rogowski coil technology is shown in Figure 3 below.

Rogowski coil installation in GIS (gas insulated switchgear)
Figure 3 – Rogowski coil installation in GIS (gas insulated switchgear)

Some pilot applications using NCIT (Non Conventional Instrument Transformers) have been implemented in France and UK on actual 245 and 420 kV GIS. These field trial installations have confirmed the performances of these modern sensors, as well as the robustness of a comprehensive Protection and Metering system governed by the former applications of the IEC 61850.

Making use of Protection relays from different vendors, these pilots also proved the perspectives of interoperability, absolutely mandatory for the End users.

Despite the maturity of these technologies, the limitation of their utilization is a reality and some reasons can be reminded to explain that.

Three ways of reasons can be mentioned and many works are undertaken to overcome the issues in order to start a large deployment in the coming years:

  1. Technology acceptance,
  2. Standardization of the interface,
  3. Testing methods.
View of a very compact three-phased GIS with NCIT
Figure 4 – View of a very compact three-phased GIS with NCIT

The current trends address a large number of different technologies and applications of the sensors like, for instance, Rogowski or optical-type current transformers, electronic or magnetic-type core for metering, capacitive effect voltage transformers of different technologies, together with demanding high specification in term of:

“Reliability, Availability and Maintenance” performance criteria.

Go back to contents ↑


1.1 Benefits of NCIT

The emergence of Non Conventional Instrument Transformers (NCIT) in the field of current and voltage measurements has been driven by the need for improved performances.

  1. Accuracy over a large metering range: NCIT are manufactured in series with a spread linked to dimension tolerances, which is corrected during the calibration phase using parameters held in an electronic memory;
  2. Non-saturation of magnetic circuits on extended metering ranges. NCIT are characterized by good linearity, both in the native state or after correction;
  3. No need for the considerable power occasionally required from the secondary units of conventional CT and VT;
  4. More compact, while allowing new metering points for a more selective protection scheme;
  5. Communication solutions for providing data to local or remote systems that belong to the power producer and the T&D network operator;
  6. New operating requirements in relation to the inter-operability / inter-changeability of components of the chain;
  7. Cabling simplification: in deed conventional instrument transformers are equipped with multiple secondary units and cabling is extensive with significant cross-sections. These parameters also result in current and voltage transformers that differ from one station to another.

We limit ourselves here to a reminder of the more common NCIT technologies in high voltage substations, which are suited to GIS substations.

Membership Upgrade Required

This content is not available in your premium membership plan. Please upgrade your plan in order to access this content. You can choose an annually based Basic, Pro, or Enterprise membership plan. Subscribe and enjoy studying specialized technical articles, online video courses, electrical engineering guides, and papers.

With EEP’s premium membership, you get additional essence that enhances your knowledge and experience in low- medium- and high-voltage engineering fields.

Limited time offer! – Save 15% on PRO Plan with coupon RLC15

Upgrade

Already a member? Log in here

Premium Membership

Get access to premium HV/MV/LV technical articles, electrical engineering guides, research studies and much more! It helps you to shape up your technical skills in your everyday life as an electrical engineer.
More Information
Edvard Csanyi - Author at EEP-Electrical Engineering Portal

Edvard Csanyi

Hi, I'm an electrical engineer, programmer and founder of EEP - Electrical Engineering Portal. I worked twelve years at Schneider Electric in the position of technical support for low- and medium-voltage projects and the design of busbar trunking systems.

I'm highly specialized in the design of LV/MV switchgear and low-voltage, high-power busbar trunking (<6300A) in substations, commercial buildings and industry facilities. I'm also a professional in AutoCAD programming.

Profile: Edvard Csanyi

Leave a Comment

Tell us what you're thinking. We care about your opinion! Please keep in mind that comments are moderated and rel="nofollow" is in use. So, please do not use a spammy keyword or a domain as your name, or it will be deleted. Let's have a professional and meaningful conversation instead. Thanks for dropping by!

forty three  +    =  forty nine

Learn How to Design Power Systems

Learn to design LV/MV/HV power systems through professional video courses. Lifetime access. Enjoy learning!

EEP Hand-Crafted Video Courses

Check more than a hundred hand-crafted video courses and learn from experienced engineers. Lifetime access included.
Experience matters. Premium membership gives you an opportunity to study specialized technical articles, online video courses, electrical engineering guides, and papers written by experienced electrical engineers.